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Abstract

--We-considerV distributed communication system with many terminals wishing to communicate
with each other. When the terminals are distributed in space we must face the following questions:
What scheme can control the access to the communication resources in an effective way? What
tradeoffs are basic to the design of such a communication system'? What is the role of hierarchies in
organizing large communication nets? How should a large network be decomposed into smaller parts?
What cost versus performance gains can be achieved by such a decomposition?

In attacking these questions we consider two technologies - line and broadcast - and two kinds
of systems - centralized .sstems. in which messages originate in the distributed terminals but are directed
to one common destination, and networks, in which both sources and destinations of messages are
distributed.

We assume that the traffic to be carried and the necessary performance are specified and that
the goal is to minimize the necessary cost. We define quality and burstines and find the following:
Dedicating channels is reasonable when the traffic is steady (i.e., not bursfy), but when the traffic is
bursty the cost of simple dedicated-channel systems grows too fast with the number of' terminals.
ALOHA is good when the traffic is bursty, but bad when the traffic is steady Neither ALOHA nor
dedicated channels are good when the traffic is of medium burstiness.

When given a broadcast channel, choosing the transmission range involves the following
tradeoff: A long range enables messages to reach their destinations in a few hops, but increases the
amount of traffic competing for the channel at every point.

In the first paper we calculate optimal transmission range. When choosing this optimal range.
ALOHA networks gain a self adjusting capability, which makes heavily loaded ALOHA networks far
better than centralized ALOHA systems. It is therefore harder to improve ALOHA networks than
ALOHA centralized systems, power groups lead to a smaller relative improvement, while a hierarchy of
ALOHA levels, with only a small population contending at the top level, can improve centralized
systems but does not improve networks.

In the second paper we showthat by introducing regular hierarchical structures the cost of
bursty systems can be significantly reddced, and that the optimal structure must be balanced. In line
systems the improvement follows from shortening individual lines, while in broadcast systems the-,
improvement follows from spatial reuse.

The cost of the best bursty line system grows with the dimensionality of the space in which
terminals are distributed. The cost of the best bursty broadcast system is similar to the cost of one-
dimensional line systems and is independent of dimensionality. It follows that bursty broadcast systems
have an advantage over line systems in two or more dimensions
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Organizing a two-dimensional network imposes a tessalation on the plane. When using the best
number of levels, as a function of burstiness, tessalating the plane with hexagonal tiles (and forming a
triangular network of communication lines) is usually optimal.

> In the third paper we show that mixed-mode systems, using ALOHA in a bottom level and
dedicated channels in a top level, can be very good for medium burstiness since they can trade the
amount of interference in the random access level against the number of dedicated channels in the top
level. By choosing the right mix. such networks can become insensitive to the limitations of both
access 'chemes.
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On a Self Adjusting Capability of ALOHA Networks

Abstract

Ac consider a distributed communication o iAo k with many terminals which are distributed in
space and wishing to communicate with each other using a comnnon radio cnnnel. Choosing
the transmission range in such a network involves the folk wing tradeoff: a long range enables
messages to reach their destinations in a few hops, but increases the amount of traffic competing
for the channel at every point.

With the help of a simple model we analyze this tradeoff for ALOHA networks, and give the
optimal range. When choosing this optimal range, as a function of specified traffic and delay
parameters, ALOHA networks demonstrate an important self adjusting capability. This capabil-
ity to adjust to traffic makes heavily loaded ALOHA networks far better than centralized ALOHA
systems (in which all messages must reach one common destination).

Dividing a terminal population into power groups can improve any ALOHA system, especially
when the traffic is split between groups in an appropriate way, which we demonstrate. But since
ALOHA networks are hurt by destructive interference less than centralized ALOHA systems it
is harder to improve them. Using power groups can significantly improve centralized systems.
but will lead to a smaller relative improvement in ALOHA networks.

l)ecomposing the system into a hierarchy of ALOHA levels, with only a small population con-
tending at the top level, can improve centralized systems but does not improve networks

I. Introduction

Consider a large number of terminals, physically distributed over a large geographic region. If
all terminals wish to communicate with one destination we shall call the system centralized and the com-
mon destination the station. Assuming the communication resource available is a radio channel of a
given bandwidth, how should this common channel be shared among the terminals?

If the terminals were co-located in the same place, the best way to use the channel is to form a
queue of busy terminals (i.e., those having anything to transmit) and to let them use the full bandwidth
available one after the other. Forming one queue is much better than giving each terminal a fraction of'
the bandwidth, and letting each terminal queue its own messages [lM.

It is no trivial matter to have all terminals form one queue when the terminals are numerous
and distributed over large distances. Of special interest, then, is the ALOHA approach, which invests
no resources in coordination and control of terminals. When using the (unslotted) ALOHA scheme
each terminal transmits whenever it has a message ready. If more than one terminal is transmitting at
the same time a conflict will occur in the use of the radio channel, -nd we shall assume at first that all
messages involved in such a collision will be destroyed. When the destruction of its message becomes
known to the terminal it will, after a somewhat randomized delay, retransmit the message. We shall
not specify how the failure of its message becomes known to the terminal, but assume that this
knowledge is free.

PREVIOUS PAGE



Schemes based on the ALOHA idea have been extensively treated 12.3,41 AI)IIA is ohvi-
ously good when the system is lightly utilized and destructike interference is not very likel When the
load is heavy a significant fraction of the transmissions will fail as a result of collisions.

The wasteful effect of collisions can be reduced if all transmissions are of the same length I
This is usually achieved by breaking long messages into packets of a fixed maximum size. In this
paper, we assume that this is always done and despite the fact that one message may result in severad
packets we assume that arrival of separate packets into our system is independent, and that the total
arrival process is Poisson.

The wasteful effect of collisions can be further reduced if time is slotted (where each slot has a
duration which is equal to a packet transmission time) and if terminals are constrained to start transmit-
ting only at the beginning of a slot. The resulting access scheme is called Slotted ALOHA, and the
maximum fraction of the time slots it can use for successful transmissions is known to be lie 161.

Let us choose the data unit so that the average length of a message is equal to I. This is simply
a convenient normalization, which is equivalent to measuring communication capacity in messages (of
an average length) per second, instead of measuring in bits per second. The throughput-delay perfor-
mance of the ALOHA schemes is not described by a simple analytic expression 131. For simplicity we
shall use the following ad-l~oc expression to describe the performance of the ALOHA schemes

T= -- I (I
C"-eS

Here T is the average response time of the system and S is the system throughput (messages per slot).
We shall assume that this expression describes the optimum envelope of slotted ALOIIA and unslotted
ALOHA performance curves. (For S-0 it describes unslotted ALOHA. for S/(-C I/e it describes
slotted ALOHA.) Equation ( I ) is a simple two-parameter approximation, that repoduces the known
behavior when S=0 and when S/C=l/e. For a similar three-parameter approxiniation see 1151.

Assume that the throughput S and the acceptable delay T are specitied, and that we seek an
access scheme that will minimize the necessary system capacity C. For most purposes it is sufficient to
specify the communication needs by the dimensionless product ST, whose inverse we shall call bursti-
ness [7,16,171. We shall define the quality [71 of an arbitrary access scheme as the inverse ratio
between the capacity necessary when using this scheme and the capacity necessary when using the best
possible scheme, in which messages form one queue and share one channel. When messages arrive
independently and their lengths are exponentially distributed the best scheme is the M/M/I queue, in

ST+ I
which we have C-S + I/T. The quality of the the ALOHA scheme is therefore simply ST+I " We

eST+lI
see that the ALOHA scheme then has a quality of I when the traffic is very bursty (ST<< I), i.e., it
needs no more capacity than the M/M/l scheme, and a quality I/e when the traffic is very steady
(ST>> I ).

ALOHA systems with large populations have stability and control problems 13,8,91, but in the
spirit of maintaining the simplest possible approximation we shall not deal with them.

In the centralized system described above, all messages have one common destination, even
though their sources are distributed. When the traffic to be carried is between nianv terminal pairs we
have a different problem, which we shall call the network problem. That is. in a network, both the
sources of messages and ihcir destinations are distributed.
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In describing the centralized system we have implicitly assumed that all terminals can transmit
with enough range to reach the station (i.e., we are not power limited), and that transmitting directly to
the station is the best policy.

If the transmission range is not enough to span the distance from source to destination, the
message will have to be received by some intermediate node and relayed towards its destination. That
is, a message may need more than one hop in order to reach its destination. The intermediate node is
often called repeater.

We have assumed that the centralized system is a one-hop system, but we shall explicitly treat
the question of transmission range in networks, since it introduces an important tradeoff: a short
transmission range makes more hops necessary, but reduces the intertering traffic. We shall see that
choosing an appropriate range, as a function of traffic characteristics, will lead to the self-adjusting capa-
bility referred to in our title.

In section 2 we analyze networks assuming that the range of every transmission can be perfectly
adjusted. In section 3 we analyze networks assuming the range of all transmissions must be equal. In
section 4 we introduce the idea of power groups and show how it improves ALOHA systems. In sec-
tion 5 we analyze hierarchical organizations of ALOHA systems with many levels.

2. Adjusting the Transmission Range

We assume that the transmission policy of all terminals is chosen to optimize the overall net-
work performance. In order to analyze the tradeoff between range and interference we need a detailed
model. We shall assume that our network covers a region of space that is large enough to make edge
effects negligible. We shall also assume that terminals are placed everywhere with the same density.
and that the terminal density is very high, so we may make all calculations as if we had a continuum of
terminals. Other assumptions we adopt are [71:

(I The rate of traffic exchanged between any two small geographic areas depends only on the size
of the areas and the distance between them. The rate does not depend on the identity (i.e.,
location) of the areas or the direction from one to the other. That is, our network is homo-
geneous and isotropic in its statistical properties.

(2) The access scheme used is slotted AL)IIA. That is, we ignore the fact that the synchroniza-
tion necessary for slotted ALOHA is hard to achieve in a network with long range transmissions
and partially overlapping ranges.

(3) The terminal's antenna Is simple, and the signal propagates equally in all directions.

(4) A transmission will not be bothered by other transmissions that are not within range of its (pos-
sibly intermediate) destination, but will be destroyed by any simultaneous transmission that
takes place within range of its destination. A transmission will be successful whenever it is the
only one within range of its destination. That is, we assume a definite range, beyond which no
interference is felt. This is. of course, an abstraction of the real world, in which both success-
ful reception and destructive interference are probabilistic events.

Consider a given terminal with a rate of s messages per slot destined to another terminal. A
transmission will be successful only if there is no other transmission with enough range to interfere
with it. Our terminal will have, therefore, to offer a total traffic of g messages per slot in order to
succeed at a rate s, were g includes retransmissions of previously unsuccessful messages. Let G be the
total offered traffic per slot heard at the destination. Assume that G is created by an infinite population
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of terminals, and that the amount contributed to it by ever"v source-destination pair is a Bernoulli pro-
cess independent of the traflic offered by any other source-destination pair. Returning to our given ter-
minal, whose contribution to G is minute, we must have s = ge ', where e 6 is simply the probabil-
ity that no other message is transmitted in the slots used by our terminal. Summing over all transmis-
sions hearJ at our destination we get

S, = Ge -G (2)

where S, denotes the total traffic successful at its destination and heard at our destination. This total
traffic consists of messages with many different destinations, and the success of each message depends
on what happens at its destination. But all these messages contend with our transmission for the use of
the channel around our destination.

Equation (2) looks exactly like the equation describing a centralized slotted ALOHA system
[6]. G and S, do not. of course, depend on the transmission in question, and we can therefore say that
any transmission sees an ALOHA system at its destination with a throughput equal to S, where the
subscript on S, stands for contending. If we unnormalze S, and measure it in messages per unit time,
we may use ( I ) and write the average delay per hop suffered by any message as follows:

T (3)C - eS,

In the centralized case, interference always destroys both messages involved. In the network case
analyzed here this is not necessarily true. Since the ranges of the transmission involved and their desti-
nations may be very different, a collision of two messages at the first's destination will destroy the first.
but may not bother the second at its destination. We shall use (3) for the delay in ALOHA networks.
even though what happens at each destination is not equivalent to a closed, centralized ALOHA sys-
tem- this is supported by (101 where the optimal transmission policy for ALOHA networks, given the
hearing matrix, is shown to be identical to the optimal policy in centralized ALOHA systems. lloyk-
ever, our goal here is to choose the optimum hearing matrix by choosing the transmission range.

The discussion so far applies to any network which is homogeneous and isotropic in a statistical
sense. To be more specific let us assume that the terminals are distributed in an tinit'te two-
dimensional region. That is, in a region whose size is much larger than the typical distance travelled by
messages, so that edge effects can be neglected. Let S be the total traffic coming out of a unit area, and
let f(r) be the traffic density. That is, the traffic going from one small (source) area d4, to another
small (destination) area dAa is given by f(r )dAdA,, where r is the distance between the two small

areas. We obviously have S = f '(r)2rTrdr and f'(r)2frr/S is therefore the probability density function
r-0i

for the distance travelled by a message. N, the average distance travelled by messages. is given by

N = f rf(r)2rrdr. To calculate S, the total traffic contending at any destination, consider a message
r-0

that must travel a distance of between rand r+dr. It will be heard at a given destination if it starts any-
where within a circle with radius r around that destination. We can then write

S,- f 7rr2p'r)2rrrdr = rS - 2  (4)
r 0

Where N 2 is the second moment of the distance travelled.

Assume now that the transmission range is chosen in such a way that every message will have
exactly enough range to reach its destination in one hop. Substituting (4) in (3) we see that an
ALOHA network in which every message reaches its destination exactly in one hop has the same delay-
capacity relationship as a centralized ALOHA system carrying a total traffic irSN2 .
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The simplicity of (4) is a result of the assumption that power can be adjusted exactly to reach
the destination. Iwo objections can be raised to this assumption:

I I ) Will a terminal al%ays have enough power to reach its destination in one transmission?

2) Will the terminal have the capability to exactly adjust its power, and will it know the distance to
its destination, on which this adjustment should be based"

These two objections are especially important in the environment of many cheap mobile termi-
nals. which is exactly the environment which makes the ALOHA idea attractive.

We shall treat these objections later, but let us now ask another question: even if we can adjust
the range so as to exactl reach the destination in one hop, is this a good policy? In [I I] the question
was posed thus: should we take giant steps, assuming we can? It was shown there that if, for a given C
and traffic requirement, the delay per hop grows without bound as a function of the step size R, then
there is an optimal step size, and steps should not be giant. We wish to find the optimal range policy a.,
a function of traffic requirements, and for this we need the following:

Theorem I: If a message must travel a distance V' in k hops it should, in order to make the best use of
the communication resources, do so in k equal hops. each of length ./k.

Proof A hether ,Ae want to minimize T when S and C are given, or to minimize the necessary C when
S and T are given. we must. in order to get the best system, minimize the total contending traffic at
each destination But this is equivalent to minimi/ing the total area at which a given message is heard.
Ic t k be the size of the i-th hop, where I A, = X'. The area in which our message is heard is propor-
tional to the Y. A " -Minimizing the area at which our message is heard is therefore the following sin-
ple problem of constrained minimization:

Minimize _ X,2
subject to I X, = A'

the solution of this minimization problem gives the equal step result stated in the theorem.

Let us no" consider the following family of policies which use a perfectly adjustable but limited
transmission range Given the maximum range R. the path of everv message will be divided into the
minimum number of equal hops. Which R will give the best overall system performance? Should we
try' to make R as large as possible? To answer these questions we must determine how S, depends on
R. Writing S, as a function of R and the distribution of the distances travelled is a straightforward but
cumbersome operation. I lowever, the following hounds are simple to obtain.

Since S( (R ) is a monotonic increasing function of R, an obvious bound is
S, IR )S, (o)=rS,, 2  When R is very large all messages will reach their destination in one hop, so
the equality here follows from (4).

Another bound, especially useful when R is small, can be obtained as follows: The total area
covered b. the several transmissions of a message that has to travel a distance r can be bounded from
above by __-rR2 and V, (R) can therefore be bounded by

S, (R < f r--rR2f(r)27rrdr 1rRNS (5,)

Fig. I shows the two bounds and a hypothetical .S (R).
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Figure 1. Two Bounds on S., the Total Successful Traffic Contending at Each Point.

We shall assume that the traffic to be carried is specified, that an acceptable delay is specified
and that the goal of a good design is to make the necessary bandwidth as small as possible. The
specification can be summarized by the dimensionless quantity N 2ST When N 2ST<< I we call the
network, and the traffic, hurstv, and when NST>> I we call the network sieadv.

For small R we can use the bound of (S) as an approximation for S (R ). and we will combine
it with NIR as an approximation for the average number of hops per message, to get the l'olloing
approximate expression for the delay

T N/R
( -- e rr.SNR

Inverting we get

C = t 'SNR + I N (6)7' R

and from this approximate expression for C we can get that the optimal R (i.e., the R that minimizes
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communicate with the Station using ALOHA. All communications will use the lull capacity of the
channel. Repeaters ma, be necessary in order to extend the range of transmission, hut we Shall assumC

this is not a problem. and shall on)" he interested in introducing repeater, in order t) impro'se Nsstern

performance. [hat i,,, to lessen the delay when and ( are gi, ci or lessen the capacity necessar\
when S and Tare gien

Should all groups of terminals be of the same size.' |o minimie contention in the bottom

level all ALOIIA subgioups should carry the same trafic, I c. a ss mmetric hottom lcel is best But in

order to reduce the contention in the top level we should have as much as\rmmetr as possiblc Ihe

best top leel\ will consist of one repeater forwarding all the traffic to the station without an. conflict
But such a two-level s.,stern vill not help u,. because its bottom level itself is cquialent to the onc-

level system we set out to impro\ e

Since two-level sysstems are introduced in order to reduce the Lontention in the bottom level we

shall assume that whencer two levels are better than one. the traffic is ecenl\ divided between groups.
Gitman 1141 introduced Such a scheme and calculated the capaciy of two-level systems, lie assumed

all terminal groups can use the sane channel without interferencc, that a terminal cannot be Successful
when its repeater is talking to the station. I c. the repeater cannot talk and listen at the same time, and

that a terminal ma, be influenced hv other repeaters talking. The largest caplacity is obtained when the

terminal is influenced only b it,, own repeater, and when there are onlh two repCaters, But even then

the capacity obtained is less than 112 The reason for this is the following: Let S be the total

throughput in the system Let (i be the total offered tralfic in the top level, that consists iif tw i

repeaters. G is larger than N because ;I includes the retransmissions of messages that have been prei-
ously transmitted unsuccessfull, In a system with capacit\ ( the slot size will be I/C since we hasc

chosen an information unit such that the packet length is one. [he throughput and the offered traffic
per slot will then be S C and 6i/C. We shall assume that the tratlic per slot offered from each of our
two repeaters is a Bernoulli process. i.e., a discrete Poisson process. which is independent (') of the

traffic offered by the other repeater. A transmission from a repeater will be successful only if the other

is not transmitting in the same time slot. Calculating the total success rate in the top level we get

( 2 1 = - _: (28)

where G/2C is the total traffic offered by each one of the two repeaters. and l--G/2C is the probabilit
that a packet succeeds. In order to achieve S/C= 12 we must hake (','(= I, so that each of our two

repeaters is talking half the time It is impossible to feed such I talkative repeater from an infinite
population of terminals, because the maximum success rate of each of the two groups is
Il-G /2()/e= 184< 25.

The maximum throughput of such a two-level system is given b.y the following set of equations

s =

S= 211 - G I!
C ~ 2 C e

from which we get that the maximum S/C is equal to 0.465. So even though we cannot achiecs the
full capacity of a two terminal Sstem we do get an improvernenlt over a one-lc'el .,L()IIA
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imprrr~enwnt t: ,fl though the considerate strong group carries more ot' the traffic. moves with smaller
steps and uses less of' the channel relative to the Aeak group.

I[or ar summai\ ot' the optimal range Lind the necessary capacity in %~arious two-dimensional ne~t-
Iwork see Ilahle I

Ilihle I

Biest 1'ransinission Range and Needed (iapacit for Vwo-IDimensional Networks

)rganitation --- Range Capacity
N1iMi / I R____ (T CO
ALIAl I N (one group)- 60 .tOR,, 1.647(7C,
M-01lIA twmo groupls. -same range)- .729R,, I 372C7,

N I Alit IA (two groupIs. separate ranges) selfish - ______I1.292C7,
considerate 1  2 78R,) 1.279C,)

i- - --- 2.-- , ~ ,A 2 -'F

.Multi-Iesel - 1.011A

I nor nii ii w hai~ e tla~s assumed our \ IA011IA s~ 'stems ba\ e a oir//imi population Let us
i,\ o nsidcr a slotted \1 011AI - s.Nstem with a finite number, or, of k oalIII ialUka c terntinals. AS.Sun-

inoe the t tikb otlcred h. mv\ terminal at at gi\,en slot is Independeint of' the triflic irfiered by other termi-
its i i it other imec slots wec can ,imply see 121 that such an rn-terminal At 011A * s. stemi can success-

hiuk ulize11 d Iractiurn of' the time slots, equal to

(li (26)

I fw ist of [tie time slots \%ill he wasted on dlestructi\ e initrference, or \kill be left Unused ev'en w itIh
nrmc mecssages waiting for transmission -1 his fast okccurrence ijs nccssar\ in an optimized s~ stem to

ensure the f'raction of slots wasted on collisions is not too large.

'A hen nt is .er large. q. ( 2h) states that the maximum utilizaion oft an infinite population
s ied AlI 11A is I 'c, which is the expressior We used beiwre. But when int is finite the AL( I IA s '\s-
ttcnr can do better. Uhe best case is when ,,i=

2 . and the maximunm porssible utilization is then 1/2 One
Litu if lso talk about anl AO11)1 S A system with only one terminal, that can use all 111rile'slots w thout anm

%%xstefu o ulfusions. but this case is Of no interest

In inalop~ to) ( I )we shall model the dela. of' a finite p)iplaLtton slotted AI I II A\ s~stem b\.

where tL, is the niaximutn possible utilization of* an rn-terminal s~ stem, ats gi'.en b\ (26r)

Since A I.11 systems with a small population hav e better utilization and smaller del t tha n
XI lIAsi stems with at large po pulation, one is led to the following hierarchical scheme I i'~ide the

e'.\ large terminal population into at small number of groups. Assign at repeater to each terminal
g ri ). IFich group will communicate with its repeater using A I0A )IA and the repeaters will

Iq



Can this result be improved if messages from the two groups will not travel the same average
distance. Let A', and ', be the average distance tra ellecd b messages from the strong and weak
group, respectively. Substituting N, for N in (23) and N, for N in (24) we have T, and T,. Our goal
now is to minimize T subject to NISi + NI2S2 = NS and subject to S' +S='S. It is easy to see that - is
minimized when N1 S2 = l = 1.261. and that the minimal T is given, once again, by (25). That Is.

the added flexibility of giving each group of messages a different average distance does not lead to a
better network!

It is interesting to note that T  ', h but that -T [hat iseTu Vh a . . . . . 1 .2 6 1 . wht i . e c a n c h o o s e th e
T, N, S2T: b

ratio between T1 and T, at %ill (b.N adjusting N1 /Nv) but the contribution of' the strong and weak group
to the average delay and to the average number of messages in the network will alvays. in an optimized
system, be in a fixed ratio.

Let RI and R 2 be the maximum hop size in the strong and weak group. I !sing (7) we see thatR I
when T is minimized - = h =.793 [hat is - the strong group cairrics much more of the traffic. and

even though it has more bandwidth available, it uses smaller hops

When choosing S i.S,2 . ' I and v, in order to optimize the two-dimensional network , ith im
groups, we hac assumed that the strong group is sellish. But wC saw before that a better overall s\,,-
tern can be obtained if the strong group is not absoluteh selfish. and does not use the channel to its
utmost. How considerate should the str(ng group be in i network

The average delay in the strong group can be written Ihcn N>> R, a is

C enR\.,

Here we cannot use (8) because when the strong group i,, consiLderate it wIll use a smaller iange R,
than the range used by a selfish group

The weaker group does not bother anyone, and should use what i- a\ailablc to it to the utmost
Let b denote, once again, the fraction of capacity a ailablc to the weak group. (h is now a design vari-
able, parametrizing the amount of consideration shown h\ the strong group). To the weak group we

N, 2S,
can apply (8), and we then get T2 = 4e-7T ur goal is to minimize '- 1 , + ST, by choos-

h2c 2

ing S1 ,N,.R1 ,S2,.N2 and R 2 subJect to S +S,=S. % I +,S:. SN When choosing S1,A' and R, we
also determine b. To see this let us denote by ( the iotal traffic (per time slot) offered by the strong
group which is heard at an' given point G can be determined b. equating the following two expres-
sions for the success rate of strong messages at an. local \LOAII.\ system (I t= ,rR IA 1Sl/C b, the
fraction of time slot% left free b, the strong group. is gien by h = " 7 obviously depends on
SI.NI.5 and V, only via the products S".N, and .',V 2. -the results of choosing the best SIN 1 and
S2N,. for a given R1. can be most simpk %riten in terms of G

I2 4v 7T_

4C'w "If- (,e (),

The G which minimize% Tcan he found h) numerically solving the equation dTdG-0, and is given hy
G - 179 , b is then equal to e .836 and the quality of' this best two-group two-dimensional net-
work is then .782. In this network, with a considerate strong group, we have :VSI/N2S 2 = 1.380 and
RIIR2 0.04 Comparing with the selfish case we see that consideration leads to an overall
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strong group is e- I times the traffic contributed by the weak group.

Until now we have applied the idea to partially coordinated groups (i.e., power groups) to cen-
tralized ALOHA systems. How can it be applied to networks? In our analysis of ALOHA networks we
have used the transmission power to control range. We shall now assume that the division into groups
is done by means which are independent of power so that transmission range can still be freely chosen.
We shall also assume that the policy of assigning transmission power is independent of position, and
that the density of both strong and weak sources is high and uniform.

One simple way to improve ALOHA networks by using groups is the following: The same
transmission range will be chosen for both strong and weak transmissions, and the partial coordination
between them will simply improve the local ALOHA system. From (18) we get that the maximum
local utilization of a two-group ALOHA system is 0.531. Substituting this in (8) we see that by using
two groups with the same range the quality of a two-dimensional network can be improved from
.Io7=.607 to ,/.53t=.729 . In one-dimensional networks the quality is equal to the local utilization
and using two groups will improve both from .367 to .531.

We see that since networks of high dimensionality are less sensitive to the limited utilization of
the ALOHA scheme it is harder to improve them by introducing a better scheme.

The capability to divide terminals into two partially coordinated groups can lead to a greater
improvement of ALOHA networks (in two or more dimensions) if transmission range is chosen
independently for the two groups.

Let us consider a two-dimensional network and assume at first that the average distance
travelled by transmissions from both strong and weak groups is equal to A'. We shall also assume that
if a message needs more than one hop then all of its hops will he strong or all of them will be weak.
Let S, and S, be the traffic density of the strong and weak group, and let T, and T2 be the average
delay suffered by messages from the strong and weak group respectively. In a heavily loaded system, if
the strong group is absolutely selfish it will utilize the full channel in the way best for it and we then
get from (8) that T, and S satisfy

N 2S
T, = 4er- - (23)

C
2

The local utilization of the strong group, when optimized for heavy traffic, is l/2e. It is easy to calcu-
late that the strong group leaves then a fraction b=.793 of the time slots unused, and these slots are
available for the weak group. That is, the capacity available to to weak group is bC. Using (8) we get
that

N S2
T2 = 4en-- (24)

1. the message delay averaged over all messages, from both groups, is given by TS = TIS, + T2S2, and
our goal is to minimize T by choosing S, and S2 subject to S1 +S 2=S. It is simple to see that T is
minimized when S/S,=l/h2 = 1.261 and is then given by

7 T 47, - ' 2 (25)
I + b2 -F

The quality of this two-group network is therefore Vii+h2/ ,  774
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Figure 3. Maximum Utilization of ALOHA With Power Groups.

This expression for T is a weighted sum of two delay terms. The first term corresponds to the
delay in the strong group, (which can ignore the weak group and that behaves like an ALOHA system
with capacity C and traffic S1 .) The communication capacity availlable to the weak group is Ce- G,1C

since this is the portion of the channel left unutilized by the strong group. The second term
corresponds to the delay in an ALOHA system with this reduced capacity carrying a traffic S2.

With a given C and with a given total traffic S-S I +S2, which S, and S2 will give the minimum
delay? The best S, and S2 as a function of load can be found numerically: Fig. 4 gives the quality of
the two-group ALOHA system thus optimized. When the system is only lightly loaded, SI/S 2 is only
slightly larger than one. When the load grows this ratio also grows, and when the system is driven to
its maximum utilization SI/S 2 goes to e-l, as given by (19). Also shown in Fig. 4 is the quality of a
two-groups system in which the ratio between S, and S2 was always chosen by (19), which is the
optimal choice at heavy traffic. We see that the improvement gained by optimizing the ratio between
S, and S2 as a function of load is negligible, and that a very good two-group centralized ALOHA sys-
tem can be obtained by simply splitting the terminal population so that the traffic contributed by the
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0.531 (IX)

and that this utilization is achieved when

S,
_ = e-1 (19)

The above treatment can be generalized to many groups. Assume that the terminals are
divided into r progressively weaker groups where the following is true: A message will never be both-
ered by transmissions from weaker groups, and will always be destroyed by transmission from its own
group or from a stronger group. We then have:

Theorem 5: Let V, be the maximum utilization of a slotted ALOIA system whose infinite population
is optimally divided into r groups, with the above assumption on immunity to some cases of interfcr-
ence. Then V, satisfy the following recursion relation:

V, (201

Proo. In analogy to the two group case we can Arfte

S, G, e (211

( , 6,,S, 6 ,; e " 11

( C " ' IS, G (, v ..

V, is obtained when S =.S+ + +S, is maxiniicd ' \.aring the (, sNIMe no ti asmssions Imimn
weaker groups will ever inlluence the strongest g4 up wc ,in lpl/c thei tho iughput scpaiatcl,, and
(21 ) will then reduce to

, = G, e 6

S2 + " ' + S, = C: l '

The optimal GI is then easily found to satis, , I and suhstituting this ( into (22) we gct
(20).

The sequence V,- whose first portion is shii.n in Ilig 3, is a monotonic increasing sequcne
converging (slowly!) to I This is not surprising since %k hen we ha%, a klrge number of groups nioi
collisions will be between messages from diflerent gi,,ups. and one of the messagev, will be successlul

Having a large number of groups with the clear separation assumed , I h-orem 5 ma) be
impractical. But having two groups is reasonable, and we shall discuss this case io some detail

Eq. (18) gives the maximum utilization of a IWO-group ALA.)IIA s~slem What will be the dclao
in this system' Returning now to our cus om of measuring S in nessages per unit time (and not per
slot), we shall model the delax by

S .1/S S
7''i ( lA, O-

where G 1 is given by Si = G, I c
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4. Capture. Power Groups and Partial Coordination

In the models of ALO)tHA systems presented so far we assumed that in the case of interference,
both messages will be destroyed. But if the colliding messages vary greatly in received power, the
receiver may be able to receive the stronger one correctly even in the presence of the other, weaker,
signal. The receiver is then said to capture the stronger signal. The capability to capture some mes-
sages will obviously improve every ALOHA system. Let us first see the resulting improvement in a
centralized ALOHA system, where all messages have one common destination. Roberts 161 proposed
and analyzed a capture model in which the power differences resulted from different distances to the
common destinations. Our approach is different. We shall assume that the terminal population is split
into two groups, that one group is transmitting with more power than the other, and that this splitting is
purposely done in order to improve system performance. In order to abstract the geometric details out
of the model, we shall adopt the following assumption 1131: The power of the two groups is significantly
different. When two transmissions from the same group occur simultaneously, they will always destroy
each other. When one strong transmission and any number of weak transmissions compete for the ear
of ,he common station, the strong one will always be captured successfully. This separation into groups
introduces, therefore, a partial coordination into the random world of ALOHA.

It may be possible to achieve such a coordination between groups by techniques that do not rely
on a power difference between them. A distinctive preamble, for example, may allow a terminal to
successfully receive it transmission from one group, which we shall call strong. even in the presence of
transmissions from the weak group. In a system which is not perfectly slotted, the first of two interfer-
ing signals of equal strength to arrive at a receiver may survive the collision and be successfully
received. From now on strong and weak should not therefore be taken literally - they do not neces-
sarily refer to transmission power, but simply characterize the group of transmissions likely to win or
lose when competing with the other group.

What will be the resulting improvement i' we introduce groups into a heavily loaded ALOHA
centralized system? If the strong group is sellish it can ignore the weak group, and use the channel as
much as possible. The strong group will then successfull ' utilize ,'e= .367 of the slots, and will leave
367 of the slots free. (In addition. 276 of the slots will be wasted on collisions). The weak group can
utilize at most I/t, of what is left free for it, i e . it can utilize I, =t 135 of the slots, and the total
rate of success b% both groups will be 0_503.

Ihe channel can be better utilized it the strong group will not be so selfish. To see this let us
now consider the division into groups as a design parameter.

Assume that we have an inlmite population of terminals, and that each terminal contributes
only a minute fraction of the total traffic While we have spoken of strong and weak terminals, the
important design question is not the identity of terminals in each group but the portion of the traffic in
each group. If we have an extremely heavy load our goal is to tind the division into groups that will
allow our system to utilize (he greatest portion of the communic.ation res'urce available. Let G, and S,
be the total offered traffic and the rate of success of th.e strong groip. (;2 and S2 the corresponding
values for the weak group. For simplicity we shall assume in this section that S and G are measured
per slot size. Using our standard assumption, that the total traflic offered by a terminal is a Bernoulli
process, independent of the traffic offered by all other terminals, we can write

(I?

(hoosing G, and G2 in order to m:iximize S=Sj + S, we find that the utilization of a system with two
groups is

13



From (17) we get the following:

Theorem 4: When the traffic is very steady the transmission range that is optimal when all transmis-
sions must have the same predetermined range is equal to the optimal maximum range when range can
be perfectly adjusted.

Proof" When the traffic is very steady and R is small, the bound of (17) is a good approximation for
S,(R ). Using this expression for S, we can continue ;s in the proof of Theorem 2.

This theorem is very intuitive: When the optimal step size is small, the capability to adjust
transmission range is not important, since the overshoot will be small.

It immediately follows that the network quality and the local utilization that were used in
Theorem 2 to characterize the optimal network for very steady traffic when the range is perfectly adju-
stable will also characterize the optimal network when the range must be predetermined.

When the range is perfectly adjustable the one-dimensional network was a special case, in which
giant stepping was appropriate. When the range must be predetermined we see from (16) that S,
increases with R. When all transmissions have a range equal to R it must, therefore, be limited even in
the one-dimensional network.

When the traffic is very bursty (N"ST << I) we expect R to be larger with respect to N, and
shall then use the bound given in (16) as an approximation for S. When R is large we also assume no
message takes more than two hops and we approximate H, the average number of hops taken by a mes-
sage, by

H = I + Probability (distance travelled > R

The capacity necessary can then be approximated by

C = eR'S + H
T

and the R that will minimize C is now given by solving the following equation:

nevSTR I-1 = Probability density (distance travelled = R)

For a very large R it is reasonable to assume that the probability density of the distance travelled is
monotonic decreasing and this equation will then have a unique solution. If, for example, the distribu-
tion of distances travelled is exponential we get the following approximate equation defining the optimal
R in a bursty system: RIN = In(I/veNSTR").

When considering centralized systems we can say that the ALOHA scheme is good when the
traffic is bursty and bad when the traffic is steady. This statement is true in general for ALOHA net-
works too. But networks have self adjusting property - by controlling the maximum transmission range
and reducing it when the traffic is steady we can make ALOHA networks (in more than one dimension)
suffer less from destructive interference than the ALOHA centralized system.

In the next two sections we shall consider two other ideas that can improve a centralized
ALOHA system and see what they can contribute to ALOHA networks.

12



In Theorem 2 we assumed n > I. The reason for this is that Theorem I can be generalized only
for the case n > I. When dealing with a one-dimensional ALOHA network we get

Theoret 3. S,. the amount of contending Irallic heard at a point, is equal to 2NS, and is independent
both of the need to break message paths into several hops and of the policy of implementing such a
break, as long as the policy is applied everywhere in the same way. That is, as long as a message path
of a given length will be broken in the same way. wherever it originates.

Prooj Consider a message that must travel a distance X, and let X, be the length of its i-th hop, where
E X, = X. The i-th hop will be heard at a given point if the path of the message is so placed that the /-
th hop starts within X, of that given point, on either of its sides. Adding the contribution of all the
hops we see that a message whose total path length is between X and X+dX will always contribute to S,.

an amount proportional to 2X. In this one-dimensional network we have S=ff(x)dx and
0

N= -'fx f(x)dx. S, is therefore given by S, =f2x f(x)dx=2NS.
so )

In one-dimensional networks, if range can be perfectly adjusted we should, therefore, giant-step
whenever possible. Even when the traffic is very steady there is no reason to limit the step size, since
no decrease in S, will follow. One-dimensional ALOHA networks have a local utilization and a net-
work quality both of which are equal to Ile.

Theorem 2 answers the question of the optimal transmission range when the traffic is very
steady. This is satisfying because ALOHA has an efficiency problem exactly when the traffic is steady.
When the traffic is bursty there is little need for improving the ALOHA network. When range is per-
fectly adjusted the range limit R grows when the traffic becomes bursty, and when the traffic is very
bursty giant stepping is the best (for all n). That is, each message should be transmitted with enough
range to reach its destination directly (in one nop). These general conclusions change once we consider
networks in which range cannot be perfectly adjusted, as we shall now do.

3. Using A Fixed Range

Assume that terminals cannot adjust the range of their transmissions, and that all transmis-
sions, by all terminals, must have a fixed range R. Since the range of all transmissions is fixed and con-
stant, some messages will overshoot their destinations. The amount of traffic contending at every point
will therefore be larger now than it was when range was perfectly adjusted. S, will depend on R in a
way that involves the distribution of distances travelled by a message, but the following bounds are
simple to obtain:

In an n-dimensional ALOHA network

tR "S < S, (16)

because at every point we hear at least the first hop of all messages originating within R. In analogy to
(II) we get

S,.< vSRn -'(N+R) (17)

because the average distance actually travelled by a message when the transmission range is predeter-
mined at R is at most R +N.

11



Theorem 2: Consider an n-dimensional ALOHA network carrying very steady traffic, where n > 1.
Assume that the transmission range can be perfectly adjusted, but only up to a maximum range R. If R
can be optimized freely (i.e., made as small as necessary) then each transmission will see an ALOHA
system whose local utilization is line and the network quality will be Il/e".

Prooj- The volume of an n-dimensional sphere with radius R is vR", where v is a constant depending
only on n (when n-2 v=ir). Theorem I will be valid for any n> I. That is, if a message must travel
more than R it should do so in the minimum number of equal hops. In analog with (5) we therefore
get

S,(R) vSNR " -  (lID

When the traffic is very steady and when R << N this bound is a reasonable approximation for S, and
we get the following estimate for the capacity necessary when Sand Tare given:

C = evSNR" + I N (12)
T R

The R that minimizes C is given by

R I ( evST(n-l) 1 (131

and using this optimal R we find that the capacity necessary is

C = -- nlevSTn-i)l 1 (14)

For that n-dimensional M/M/I network we get a set of equations very similar to (12)- (14), but in
which I is substituted for e. (Compare for example (8) and (10) in the two-dimensional case.) From
(13) we see that the optimal R in an n-dimensional ALOHA network is smaller than the optimal R in
an n-dimensional M/M/I network by I/e". As long as this smaller R is consistent with our model
we can derive from the dependence of ('on e shown in (14) the quality part of the theorem.

The local utilization is, by definition, equal to

S, vSNR (IS)
C C

and substituting (13) into (15) we find that when the optimal R is used the local utilization is I/ne.

Theorem 2 can be immediately generalized to the situation in which the antenna carried by ter-
minals is somewhat directional. Assume the antenna radiates into a cone, which takes a fraction a of
the sphere. This is, of course, a gross simplification of the real radiation pattern, but is consistent with
our simple modeling of transmission range. If we compare the case of an omni-directional antenna to
this case of an a -directional antenna we find that, with any transmission policy, the total interfering
traffic at any point is smaller by a factor a. The optimal R for steady traffic, given by (13), will become
larger by I]/a / " (we shall not have to push so much towards small R), and the necessary capacity of
(14) will become smaller by (a". But when we compare an a-directional ALOHA network to an
a-directional M/M/l network we find that the local utilization and the network quality in the optim-
ized structure will remain as stated in Theorem 2. An improved technology (i.e., directionality) will
help both the ALOHA network and the M/M/l network. But whenever they use the same technology
a comparison between them will show the inherent cost due to the random access aspect of the
ALOHA network, and this inherent cost is e
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THE ALOHA NETWORK CAN, BY CHOOSING A
TRANSMISSION RANGE THAT IS SMALLER THAN
THE RANGE OPTIMAL FOR THE M/M/1 NETWORK,
MAKE ITS REOUIRED CAPACITY ONLY i TIMES
LARGER THAN THAT OF THE M/M/1 NETWORK

e +1i-- Co

Voi C 0

Co

TRANSMISSION RADIUS (R)

Figure 2. Capacity Necessry for Very Steady Two Dimensional Networks.
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best possible M/M/ I network scheme is in general a function of S, T and the distribution of distances
travelled. For very steady tratfic we get, in analogy to (7), that the optimal R is given by

R I(9

and when using this R the capacity necessary is

CT = 2v;N_2ST 1(I)

Dividing (10) by (8) we get that the quality of heavily loaded two-dimensional ALOHA network with
the optimal step size is l/./e= 607! How did we get this dramatic improvement over the heavily
loaded centralized ALOHA system, whose quality is I/e=.367?

We may say that every message sees at its destination an ALOHA system whose utilization,
which we shall call local utilization, is S,/C. When the traffic is very steady and when the optimal R is
used we get from (7) that every transmission sees an ALOHA system whose local utilization is 1/2e,
i.e., half the maximum possible utilization of an ALOHA system. The quality of a centralized ALOHA
system with this local utilization is .68. It is only at much higher utilizations (closer to Ile) that the
quality of a centralized ALOHA system goes down to Ile. The need for several hops will bring the
quality of the ALOHA network down, from .68 to .607 . We see therefore that by choosing the optimal
R as a function of burstiness our ALOHlA network has gained a se/f-adjusting capabilitv, and it will not
allow itself to be pushed to higher loads, where it is really bad.

From (8) and (10) we see that two-dimensional networks with the optimal R show an econom.
of scale when very steady: for a given T, the necessary C grows only like V/.

Comparing (7) and (9) we see that the optimal transmission radius R in a steady ALOHA net-
work is smaller than the optimal R in an M/M/1 network by a factor Il//e. The optimal R in both net-
works goes to zero as the traffic becomes very steady. We have implicitly assumed that there always is
a terminal at the end of the hop that can receive our message and forward it. But if R becomes too
small there may not be a terminal so conveniently situated. If R becomes even smaller, our terminal
may not be able to communicate with any other terminal, and the network may become disconnected.
Kleinrock and Silvester 1121 treat this issue explicitly, while calculating the optimum transmission range
with a different objective: obtaining the maximum throughput from the given channel, assuming
infinite delay is acceptable. We shall not treat this issue here, but our assertion about the self-adjusting
capability of ALOHA networks must be qualified.

Consider once again an ALOHA network and an M/M/I network. both carrying the same very
steady traffic. If it is practical for the ALOHA network to choose the optimal R according to (7) then it
will need only ve times more capacity than the optimal M/M/l network, i.e., its quality will be I/I/e.
But if R cannot be made so small, the quality of the ALOHA network will go down. If the ALOHA
network is constrained to use the same R as the optimal M/M/1 network then its local utilization will
be !/(e+l)-.269 and its quality will be 2/(e+l )=.538. If both the ALOHA and the M/M/l networks
carry a very steady traffic but are constrained to use an R that is much larger than the one given by (9)
then the local utilization of the ALOHA network and its quality will be l/e.

Fig. 2 sketches the dependence of the necessary capacity on the transmission range, in the
two-dimensional ALOHA and M/M/ I networks.

Our treatment of two-dimensional networks can be summarized and generalized to
n-dimensional networks as follows:

9



the necessary C for given NS and T) is given by

R I(7

While we use the term optimal R, equation (7) actually determines the optimal value for the maximum
transmission range. Given the distance a specific message must travel, R determines the necessary
number of hops, and the transmission range of all hops is then chosen according to Theorem I The
capacity necessary when using the optimal R can be obtained from (6) with the use of (7); it is given
by the following relation between CTand N2ST, both of which are dimensionless quantities,

CT = 2/-eN 2ST (8)

When the traffic is very steady (i.e.. when N2ST>> 1) (7) says that the optimal R will be much smaller
than N. The approximations made when writing (6) are consistent with this result, which is also quite
intuitive: Consider a steady system with a given S and a large T. When we are willing to tolerate a large
T the number of hops can be large, and we can therefore choose a small R. Each message will then be
heard only in a narrow strip along its path, so S, will be small, and the necessary bandwidth will there-
fore also be small. When the traffic is very bursty we get from (7) that R is much larger than N. This
is again very intuitive - when the traffic is bursty there is little contention and therefore almost nothing
is gained by forcing a message to undergo more than one hop. But the exact value given by (7) is not
meaningful when the traffic is bursty, because the approximations used when writing (6) are not valid
when R is large.

A general conclusion that emerges is that in a two-dimensional network it is better to limit the
transmission range even if our terminals can adjust their range exactly and have no power limitation.
This voluntary limiting is especially important when the traffic is very steady, and the optimal range limit
R is then given by (7).

How shall we define the quality of networks? Clearly one should not compare a network to one
huge centralized M/M/l system that carries all messages to one common destination because practical
networks have an advantage over centralized systems: The same capacity can be used in different
regions of the network to successfully transmit different messages at the same time. That is, network
capacity can be spatially reused.

A common measure used to characterize access schemes is the maximum utilization they can
make of the given communication resources. This maximum utiliza!ion is sometimes called capacity,
especially by authors whose variables are normalized by the slot size, and who therefore do not expli-
citly mention the channel bandwidth. We use the word capacity to describe an amount of communica-
tion resources (i.e., the number of bits or messages that can be traismitted per second) and utilization
to denote the useful fraction of that capacity.

The quality of a very steady centralized system, as defined by us 171, is equal to its maximum
utilization. But utilization is not a good measure for networks with a continuum of terminals since util-
ization can be arbitrarily increased by spatial reuse, i.e., by limitinE the transmission range.

It seems that every network organization must address the question of how to coordinate ever)
transmission with at least all the traffic that is heard at its destination Since the best possible system
will coordinate this traffic perfectly, we shall compare all networks to the network that uses the same
technology (i.e., omni-directional antennas) but that somehow achieves perfect coordination between
the traffic contending at every point, and in which transmission ranges are chosen optimally. We shall
define the quality Q of any network to be the inverse ratio between the capacity necessary for it when S
and Tare given and the capacity necessary in the M/M/I network for the same S and T In general
Q I, and equality holds only for the M/M/I network itself The capacity necessary for this
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We shall model the delay of our two level system by the following ad-hoc formula

C- 2S (C-G/2) -eS/2

This equation gives T in terms of C and S, where G is also given in terms of C and S by (28). The first
term stands for the repeater-to-station delay, as given by (27) with U2 _ 1/2. The second stands for the
terminal-to-repeater delay. It is also based on (27), with the following modifications: Since a repeater
cannot listen while talking, the capacity available to each of the terminal groups is C-G/2. S/2 is the
traffic carried by each group, and Ile is the maximum utilization of an infinite population ALOHA.

A three-level organization, as shown in Fig. 5,

D

1 1 11

2 4 2 4

00 0 00 0 0 0

WHEN SYSTEM IS DRIVEN TO ITS MAXIMUM UTILIZATION NUMBERS ON LEFT
OF LINES SHOW FRACTION OF TIME NODE IS ACTIVE. NUMBERS ON RIGHT
SHOW FRACTION OF TIME NODE IS SUCCESSFUL

Figure 5. Structure of the Three-Level ALOHA System.

can improve the system performance even more, for high loads In the best possible situation, we shall
have only two cases of interference: Two messages trying to reach the same repeater will destroy each
other- and a message trying to reach a repeater that is itself transmitting will be destroyed without both-
ering the repeater's transmission. In this case the Svsten can drive the top level to its capacity, and the
utilization can be 1/2. Fig. 6 show's the qualit.y (if one-level, two-lcel and three-level ALOHA sys-
tems. For comparison the quality of FI)MA with 1024 terminals is ilso shown.
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Four or more levels will never improve the performance of an ALOHA system, as given by our
model. -To see this consider Fig. 5 again: the numbers on the left of the lines in the two top levels
give the traffic per slot that must be offered by the repeaters when the system is driven to its maximum
utilization. The numbers on the right give the rate of successful traffic per slot in each hop. In order
to get a utilization of 1/2, each of the top-level repeaters must be active 112 of the time, and will be
successful on the average 1/4 of the time. Each one of the second-level repeaters must be successful
1/8 of the time, and must therefore be active 1/2 of the time. The capacity available to each one of
the bottom-level infinite population ALOHA systems is ('/2, and the delay in each will be

T= I When the system is driven to its maximum utilization we have S=C/2, and theC!12 - eS/4

ST Iburstiness of the bottom-level ALOHA system is 4 - .78. From Fig. 6 we see that at this

burstiness a one-level ALOIHA system is still better than multi-level systems, and the three-level
ALOHA system cannot, therefore, be improved by splitting its bottom level into more levels, even
when it is driven to its maximum utilization.

We have just seen that multi-level ALOiiA centralized systems can be better than one-level
ALOHA when the traffic is heavy, because in the top level we can have a contention system with a
small population. which can better utilize its communication resources. Will such a multi-level organi-
zation improve networks'

Let us start with one-dimensional networks, and introduce equally spaced repeaters as the top
level. We shall have the smallest population of contending repeaters when transmissions go only from
one repeater to its two nearest neighbors. Assuming omnidirectional antennas we find that three
repeaters, i.e., the source, the destination and its other neighbor, contend at every point. The max-
imum utilization can therefore go up, from l/e to 4/9. but the amount of contending traffic has also
gone up, from 2NS to 3NS! The reason for the increase in contending traffic is that when we assumed
a continuum of terminals and considered a given transmission, the amount of traffic generated exactly
at our destination was negligible and our transmission had to contend only with traffic crossing its desti-
nation. But when we concentrate the traffic in our repeaters the amount of traffic corming out of a desti-
nation is NS, which is not negligible, and must be added to the crossing traffic, equal to 2NS as before,
in order to get the total contending traffic.

In general, assume each repeater has a range to reach k other repeaters, and, for simplicity, that
the distance each message must travel on the repeater-repeater network is a multiple of k. The traffic
coming out of each repeater is then NS/k. Each contention system will consist then of m-2k+l
repeaters and the total traffic in it is (2k+l)NS/k = 2mNS/(n-l ). Let It be the number of hops
necessary, on the average, in the repeater-repeater level. The capacity necessary for this level is there-
fore

I 2mNS +A (29)
U,, m-I T

Where U,, is the maximum utilization of an m-repeater ALOHA ,ystem. U is written explicitly in
(26), and substituting we get

I 2NS = I- 2NS >e2NS (30)
U ", M-1 I

lrom (30) and (29) we see, even if H is equal to I, that the repeater-repeater subsystem needs more
capacity than the entire one-level network! The detrimental effect of concentrating the traffic and
increasing the contention is more important than the gain in the possible utilization of a finite popula-
tion repeater system. Our conclusion here is, therefore, that if range is no problem, concentrating net-
work traffic into repeaters wastes communication resources. Introducing repeaters can, of course, be an
improvement if their range is much larger than the terminals' range, and if this significantly reduces the
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number of hops a message must take.

In a heavily loaded two-dimensional ALIHA network we saw that the optimal transmission
radius is small. That is, even without repeaters, whenever the trallic is steady we should make our con-
tending terminal system as small and as finite as we dare! Repeaters are not necessary for improving
the utilization of a heavily loaded two-dimensional network, and the extra level they introduce is waste-
ful. Repeaters can be very useful, for networks of intermediate burstiness, if ALOHA is used for
terminal-repeater communication and dedicated channels are used for repeater-repeater communication.
For a treatment of such mixed-mode networks see 1181.

6. Conclusions

Using ALOHA as an access mode for a communication system consisting of a large number of
distributed terminals is extremely simple and therefore appealing. But a heavily loaded centralized
ALOHA system, in which all messages must reach one common destination, will need e times more
bandwidth than the theoretical best (and impossible!) M/M/I.

ALOHA networks are in a better position. Since messages have various distributed destinations
the channel can be spatially reused: i.e., various transmissions can successfully use the channel at the
same time if they are separated spatially and do not interfere at their destinations. The contention
between messages is not directly determined by the given traffic, and it can he adjusted by choosing the
transmission range.

By modelling a homogeneous and isotropic network by a continuum of terminals we calculated
the optimal transmission range. A two-dimensional ALOHA network need be only !e times worse
than the corresponding M/M/I network, even when very heavily loaded, as long as the calculated
optimal range is not too small to be practical. The calculated range becomes too small when only it fe"
terminals are within range of each other. But the problem of organizing and coordinating a system with
a large number of terminals, which was the original motivation for using ALOHA, has disappeared, and
other access modes can then be used to advantage, though we have not considered any in this paper.

Since ALOHA networks pay a smaller price for contention then do the centralized ALOHA sys-
tems it is harder to improve them by reducing contention. Splitting terminals into power groups can
improve any ALOHA system, especially when the traffic is split between groups in a good way, but the
resulting improvement in centralized systems is much more significant than the resulting improvement
in networks.

In a centralized system all messages must reach the station, and must therefore contend for its
ear. A multi-level organization using ALOHA at all levels can improve heavily loaded single-
destination systems by having only a small number of intermediate nodes communicate directly with
the station. Multi-level ALOHA organizations do not help networks, because choosing the transmis-
sion range is a much more effective means for controlling the amount of contention.
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Hierarchical Use of Dedicated Channels

Abstract

We consider efficient organizations for communication resources which arc accessed by a large
number of geographically distributed terminals. l)eveloping a model for systems built with dedi-
cated channels, we answer the following questions: What is the role of hierarchies in organizing
large communication nets? flow should a large network be decomposed into smaller parts?
What cost versus performance gains can be achieved by such a decomposition.

Assuming that performance is specified and that the goal is to minimize the necessary cost, we
define quality and burstness and find the following: Dedicating channels is reasonable when the
traffic is steady (i.e., not bursty), but when the traffic is bursty the cost of simple dedicated-
channel systems grows too fast with the number of terminals. By introducing regular hierarchical
structures we show that the cost of burstv systems can be significantly reduced. The optimal
structure must be balanced, and the ratio of the contribution of the different levels to both cost
and dela, is simply determined by a few key system parameters.

A c consider two technologies line and broadcast. The cost of the best bursty line system grows
with the dimensionality of the space in which terminals are distributed. The cost of' the best
burst. broadcast system is similar to the cost of one dimensional line systems and is independent
(f dimensionalits,. It follows that bursty broadcast systems have an advantage over line systems
in to or more dimensions.

Ihe aboe apply to both centralized systems, in which messages originate in the distributed ter-
minals but are directed to one common destination, and to etworks,. in which both sources and
destinations of messages are distributed.

Organizing a two-dimensional network imposes a tessalation on the plane. We compare the
three regular tessalations and analyze the relevant tradeoffs. When using the best number of
levels, as a function of burstiness, tessalating the plane with hexagonal tiles (and forming a tri-
angular network of communication lines) is usually optimal.

I. Introduction

Designing a communication network for a given traffic requirement consists of balancing cost
and performance Faced with the task of analyzing networks, we must abstract the relevant features of
traffic, performance and cost in order to arrive at a manageable model. In this paper we develop such a
model and use it to answer the following questions: What is the role of hierarchies in organizing large
communication nets? [low should a large network be decomposed into smaller parts'? What cost
sersus performance gains can be achieved by such a decompos'tion? To motivate the abstractions
necessary to arrive at our model consider the following simple example

Assume messages originate at m different sources (buffered terminals). Assume that the appearance of
messages at each source is a Poisson process with rate S/m messages per second, and that the length of
messages has an exponential distribution. Let us choose the inf(.rmaaion unit so that the average length
of a message is equal to I: this is simply a convenient normalization, which is equivalent to measuring
communication capacity in messages (of an average length) per second, instead of measuring in bits per
s-econd. Assume all messages are directed to one destination (computer), which we shall sometimes
call the station,

27



Consider the two cases shown in Fig. I.

o STATION 0

O TERMINALS 0 0

0 000

00

CASE I CASE 2

TERMINALS AT ONE PLACE TERMINALS DISTRIBUTED

Figure 1. Centralized versus Distributed Terminals.

In both cases all terminals are at the same fixed distance from the station. In case I all terminals are at
one and the same location. They can, therefore, share a single communication channel. In case 2 the
terminals are spread out around the station, and we shall connect each one to the station by a separate,
individual channel.

How should we compare these communication systems? Having fixed the structure of both
systems, and since the distances from all terminals to the station is the same in both cases, we shall
ignore for the moment the question of distances and cost, and shall characterize both systems by the
relation between the following three parameters:

S Total rate of messages transmitted (messages per second)

T Average total time spent by a message in the system (seconds)

C Sum of the capacities of all communication resources used (messages per second)

In order to compare th ,- two systems of Fig. I let us first find the relation between ST and C that
characterizes each of them.

In case I all sources are in one place and are connected to the destination by a single communi-
cation channel. Each message will join a queue at the terminal end of the channel, and when its turn
comes will be transmitted (o the destination. We thus have a clatsical M/M/I queueing system III
with arrival rate S and service rate ( (messages per second). The average total time T a message
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spends in the system (in queue and in service) is given by

C (I)
C-S

In case 2 each terminal is connected to the station by an individual channel. If C is the total capacity
available, let us connect each source to the destination by a channel whose capacity is C/r. Each mes-
sage will therefore have to pass through one of in identical queueing systems (with arrival rate S/m and
service rate C/m each.) The relation between capacity and average time in this system is simply

T= I M (2)C/m - S/mn C - S

If the communication capacity we use is predetermined, it is natural to compare the delay in the
alternative organizations. In our case. for a given C and S, let T'1 and T2 be the time spent in case I
and case 2 of Fig. I respectively. Forming the ratio of (I) and (2) we get

1 (3)

'2 m

rhe M/M/I s stem iof casc I is. with the given assumptions on the statistical nature of message arrival
and length, the best we can achieve. i.e.. we pay the only the unavoidable price for queueing, and noth-
ing more. In case 2 we have the same queueing effect, but in addition pay a significant amount for the
decision to dedicate a part of the channel to each of the terminals. Equation (3) says that a system with
m dedicated channels is in times worse than sharing one M/M/I channel! For this and other scaling
results scc (21.

In our simple example. TI T2 does not depend on either S or (. But even in the general case.
the ratio of times used to compare two systems is a dimensionless number. It can, therefore, depend
un S and C only via their dimensionless ratio S/C, which is the utilization of the communication chan-
nel, usually denoted in queueing literature by p. When S-C<C. we say that the system is lightly
loaded. When S is \erv near C. we say that the system is hea, ily loaded. When S > C the system is
overloaded and unstable, we shall not treat thi, case Both (I) and (2) give the average delay in the
steady state of a stable system.

Equation (3) compares M/M/I and the dedicated channels scheme when C and S are given.
[low do they compare if T and .S are given and we want to minimize the necessary capacity'? Let C,
anid C, be the capacities necessary in cases I and 2. Inerting () and (2) and forming the ratio we get

C, ST+ 1(4)

('2 ST + m

It is not surprising that the dimensionless ratio given in (4) depends on S and T only via their dimen-
sionless product S1 We shall call the inverse of ST the burstness 3! of the system. When ST is small
(S7<< I ) the system is hurvtv'. When ST is large (ST>> I ), the system is steady. When the traffic is
burst) there are only a few messages in the system. rhere is little congestion, and the delay suffered
by messages is mainly determined by the time necessary to mtrnsmit them. The communication
resource is only lightk utilized in a bursty system When the traffic is steady the communication
resource is heavily utilized and the delay is mainly determined by the congestion.

Definitions equivalent to our burstiness were introduced independently by others [4,51. This is
not surprising, since ST is the only dimensionless number one can form with S and T Lightly loaded
systems are bursty, and heavily loaded systems are steady, so we shall sometimes use these terms inter-
changeably. But we shall use the terms bursty and steady when we wish to stress the fact that S and T
are given, and that ( is to be determined in the design process. We shall also use the terms bursty and
steady to describe the traffic a given system has to carry.
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Equations (3) and (4) may look ',er, different intuitivel, e',en though thc. compare the same
pair of systems. If we assume .S and T"are given and compare the needed capacity we see that ('/(
depends on burstiness: when the system is verv bursty i.S7-) dedicated channels are m times as bad
as M/M/1, when the system is ,ery steady (ST-- ) dedicated channels are almost as good as M/MI
But if we assume that C' is gien and compare the delay as a function of load then (3) tells us that dedi-
cated channel are alwa in times as bad as M/M/ 1. Which comparison is more meaningful.

In a real commercial environment we mayv be constrained to use a communication channel with
one of several predetermined capacities. Comparing delay will then be the right tool t(or evaluating
alternative system organizations and (3) 1will be more meaningful

Iloweer. for the purpose of this paper, we shall assume that capacitx. can he freely chosen in
the course of a system design The client of the design will specify traffic and perlormance. and we
shall e\,aluate different designs h the resources necessary in each of them 'hile this attitude ignores
some of the real-life constraints. we feel it g ies a much better understanding of many important techn-
ical issues

2. Designing Distributed (ommunication Systems

Why is it that the terminals in case 2 of :ig. I cannot form one queue and use one common
channel'' One may say that the terminals are distributed in spu'e. and therefore cannot share a channel
This statement is reasonable if Ae arc committed to using lines (or communication, but in general it
should and it can be made more precisc While lines connect pairs of points, other communication
technologies ha%,e the broadcast propert, a transmission made by one terminal will be heard by all oth-
ers. Consider the following gedanken experiment \ssume our terminals hae a strong empath and
that, as a result, each one ot them senses. immediately and with no error, the fact thai another
becomes ready to transmit. )espite being distributed in space such a set of terminals can easily form
one queue and share one broadcast channel We may say' that if perfect knowledge of who is read\, i
transmit was available. then being distributed in space would have been of' no consequence.

Consider now another gedanken experiment There is no empathy between terminals, hut there
is a demon who has perfect knowledge of who is ready to transmit Assume also that terminals will
transmit only when instructed to do so by the demon, and that these instructions arrixe free and
without delay. Then, once again, the terminals can easily share a broadcast channel: a queue will form
in the demon's head. and the demon will instruct the terminal at the head of the queue to transmit.
We see from this hypothetical example that it is enough to have perfect information in one place, if
that one place could perfectly control all transmissions

The problem of real distributed communication sy stems is that the control of transmissions is
distributed, and must be based on distributed information The information that is available at each
place is therefore partial and old. We have no perfect empathy and no cooperative demon. [aced with
this reality people have developed many schemes for deciding which terminal will use which part of the
communication resources at a given time These schemes, often called access modes, usually utilize
some of the following ideas: central control using preAllocation (TDMA, I DMA) or polling [61, reser-
vations 17.8,91. ALOHA 1101, and carrier sense [III

It would have been nice to be able to completlel characterize all possible access modes, and say
which one is best for which range of system parameters. But we are far from achieving such a goal
We know no complete characterization of access modes The performance of many of the known
access modes is extremely hard to obtain in an analx tic way because the)' involve complex systems of
interacting queues. While it is often easy to evaluate an aciess mode for a small range of parameters by
simulation, it is hard to use simulation to get insight as to which access mode is best for which range of
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parameters

Rather than trying to treat the ensemble of all possible access modes we shall concentrate on
one of the simplest - using dedicated channels Fhis is reasonably good when the traffic is steady, but
bad when the traffic is bursty. We shall assume the communication system has very many terminals,
distributed over cry large distances, and ask For a given traffic and required performance, can the cost
of a %,ery bursty s),stem be reduced by a hierarchical organization? Before trying to answer this question,
let us sa. how we shall describe traffic, specifl performance, and calculate cost.

To specif traffic we shall assume ni. the number of terminals, is very large, that terminals are
uniformly distributed in their geographic region, and that all terminals contribute equally to the traffic.
The reason is that we are interested in hierarchies that arise in the design process, and not in hierar-
chies that are imposed by the topology and traffic requirements. It is also often true that the uniform
case is the worst case for a distributed system if traffic was especially concentrated in some terminals or
regions then the system would be less distributed. In addition we shall assume different messages
appear independently When we treat very bursty traffic the exact distribution of message interarrivals
is irrelevant, and only S, that total rate of messages, will appear in our formulas.

Delay will be our only performance measure, and we shall ignore the very important issue of
reliability. Indeed, only the average delay T will appear in our formulas, but essentially all results will
remain valid when the variance, range or distribution of acceptable delay values is specified in addition
to the average delay Meister et al 1121 propose and analyze a performance measure that can influence
the variance of delay We shall show later that we can achieve equivalent results by adjusting our cost
measure.

The cost of communication depends on tckhnology We shall classify the very many technolo-
gies possible into two groups: line s.ystems and broadcast svstems: and shall assume a cost measure for
each group.

A line enables the two points at its ends to communicate The line can be a tight string, a pair
of wires, a coaxial cable, or a light guiding optical fiber. Line-based systems have many advantages, but
depend. of' course. on a line arriving at every point that needs to communicate. We shall assume that
the cost of a line s stern consists only of the cost of lines, and that the cost of' a line channel is directly
proportional to the u-th power of its length, and to the b-th power of its capacity. By choosing b< I we
model the economy of scale usually present when building or buying a large capacity channel. When
a < I we actually can take into account the cost of equipment at the ends of the line, which we do not
consider explicitly.

The second type of communication technology we shall deal with is that of broadcast systems.
The main property of broadcast channels is, that for better or worse, everybody within range can talk,
listen and interfere with everybody else- that is, they all hear every transmission. When everybody is
within range of everybody else we have a one hop system - every message can arrive from source to
destination in one hop If the transmission range is less then the distance spanned by the terminals we
have a multi-hop system A message may have to be transmitted more than once, at first from its
source and then from intermediate 'relays', in order to arrive at its destination. In a multi-hop system
it is possible for two different transmissions to successfully use the same broadcast channel at the same
time. if they are not within range of each other. i.e., a broadcast channel can be spatially reused. When
choosing a transmission range we must, therefore, face the following tradeoff: If we choose a large
range we shall need few hops, but will cause a lot of interference and monopolize the channel in a large
region We analyze this tradeoff, but ignore the following fact: Range is determined by transmission
power, among other factors, and power is seriously limited when terminals are mobile.
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When dealing with broadcast systems we shall entircly ignore the cost of equipm .nt
(transmitter, receiver, antenna, power source) and consider only the amount of broadcast bandwidth
used as the cost of the system. The motivation is that technology will make the equipment cheaper and
cheaper, but that the bandwidth is now and is likely to remain a truly scarce resource, especially as the
overall communication traffic grows. We shall assume the cost of a dedicated broadcast channel with
capacity C is given by (.' and ignore a technology-dependent multiplicative constant. Usually b will be
smaller than one: there is some cost in bandwidth when a separate channel is created, and wide band
channels are therefore relatixck cheaper.

The division of all possible communication systems into either line or broadcast systems is, of
course, somewhat arbitrary. On the one hand, a broadcast transmitter with a directional antenna and
beam can become part of a line system, as the microwave links of the telephone system show. On the
other hand, a broadcast system like ALOHA can be implemented on a set of lines [131. Communica-
tion satellites, a prime example of broadcast technology, are actually used by the international tele-
phone community as *lines*, i.e . for point-to-point communication connecting a single source with a
single destination. We consider both this division into lines and broadcast systems, and the cost assign-
ments we made. to be useful abstractions, that help isolate the issue of being distributed, which is ow
main interest here.

Real systems are built slowly. Investments have to be based on estimates of future demand.
and the demand in the future is influenced by the existence of the system and the quality of service.
We shall ignore this interaction over time, and assume our systems are built in order to satisf. the
known demand and ser ice requirements at a given time.

3. Decomposition and Resource Allocation

Having specified our performance and cost measures, let us return to our ti equally talkati.e
terminals, all of whom wish to communicate with the single station. Denote by L the 'typical' linear
dimension of the region over which terminals are distributed, and assume a line-based communication
system is built to connect all terminals to the one station. Since we assume that the cost of evey line
is proportional to the a-th power of its length the total cost of our centralized system must be propor-
tional to L'. The total cost must also be proportional to the b-th power of the typical line capacity.
When the traffic is very bursty the typical capacity must be 1/T (see equation ( I ) ). and it follows that
the total cost is proportional to I/T'. The total cost D can therefore be written, without loss of general-
ity, as

Th
Given our assumption on the cost of individual lines, the dependence of I) on L and on T is an inevit-
able result of the traffic requirements, i.e.. of wanting to communicate (across distances that are typi-
cally L) over lines (whose capacity must typically be I/T) The .f appearing in (5) shows how the s~s-
tem cost depends on its being distributed. .f contains some geometric constants, and a dependence on
m, the number of terminals. We shall usually ignore the constants, and address the dependence on n:

How fast does./'grow with m? Must it grow that fast?

Assume we have a procedure for designing a very bursty centralized communication system,
given m, the number of equally talkative and uniformly distributed terminals. Such a design procedure
can be completely characterized by its /function, delined by (5).
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Applying a given design procedure to a communication system with very many terminals may
be too expensive. Can we reduce cost by decomposing the system into small parts, and by applying the
given design procedure to each part separatel)'. 'low should we decompose a large system and how
should we allocate resources to the different subsystems? We shall start with the latter question.
Assume the cost of the j-th subsystem is given by (5), i.e.,

Lj

D, _

and that the total system cost is D= D, Assume that the delay measure T is given by the Following

%,!ighted av.erage

T = "S'7S (6)

where S, is the traftic carried by the j-th subsystem and S is the total traffic. If we now choose the T, in
order to minimize D given T (or in order to minimize Tgiven D) we get the following cost:

D 1 Bb" (7)
(ST) b

where B = ILYaSJf,) b

Minimizing the cost of a hierarchical structure often involvcs minimizing B given in (7), which
"c shall call the B-term

'A hen resources arc allocated to suhsy stens in the optimal wa?, which leads to (71, we also get

D S,T LraS bi, b- ,X' (8 )
D, Sk T, Lk"S h/A

That is. the contributions of subs. stems to the delay measure and to the cost are directly proportional
to their contribution to the B-term.

When our subsystems consist of a single line each Equation (7) is very similar to Kleinrock's
optimal capacity assignment 1161, with the following difference- by restricting ourselves to very burst'
traffic we can handle cost functions with any h, not just the b=I case. When the traffic is very bursty
there is also a simple equivalence between modifying the delay measure to T' ) of Meister et al 1121
and modifying the cost measure by substituting h/k for b.

When writing (6) we have assumed that the routing of individual messages does not depend on
the state of the network. i.e., routing is not adaptive. We see that no matter what b is. the B-term is a
concave function of S, and the best routing must therefore result in a tree-like network - it does not
pay to split the tratfic from a given source to a given destination and route each portion differently.

A hen the performance measti"c specified includes the distribution of delay values, equation (6)
may be too strict, since it imposes a similar distribution on every one of the subsystems. Equation (0)
can then be considered a heuristic, and the resulting allocation may bc suboptimal.
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4. Regular Hierarchical structures

F la ing decompo(sed J L nI l I UnlI Ctiotm s% steml cquatii in i gi\ cs a Ai\ to) aiiocate recsources ito

its %arious parts 1Ae do nt k nowk Ahith is the lipt niI,it a to dccl mpilse i large s, stei Coro our gll
(ot minimnizing cost, so we shill Lose tn,)hcr hIILIsti, 10 into 'idUL it. consider the tiillowAng two)iCeIc
structure Assumec the ,; tvi nwls ale UnitII athk di iiba.ted Inl J region (it' o-dinlsional sp~ace. 111d

dII IdC this regiiwn int P' ()nLrLJII1 e(iIlas Place:t ,ncuTratklr in the middle of each region. connedL
aill P ConCentrators to) the stai!(n a i-eOrIng t a gikeiesign proCdure-C and connect all1 terminals In I
given sub~region to 'their' cmincrntiattor aivcording ithe sxne design procedure For sinmplicit\ ot ow
formulas we shall assume that Al subregzions ha\ e the same shatpe as the original region, arnd will ignore
the Constant coetlicients that depenad onl this Lcon-mo shape irnd on the dimiensionalitY.

We shall call this hierairchical N~ 'stemi a twil- lee ci gular bier archical s~ stem where the w oid
regular refers to the Lact that ill regin, inare (it the sante ;tie and shape. and that all coincentrator., arc
placed in the middle it thei reins 'Ac shall call the communication sldhs\stemn connecting clncen-
rators to the stat jion the rop Ic ci. and the sO bsv 'stemn connleL ting term-inals to coci i-trtors the holuio

lev el The top) le'el Co nsists I11 a netwo(rk \Aith the P cncentrators actinga as termitnals, and the butt 'i
lc\ el consists, lt P n,:t w aks wk oh !a. P terminails eac h

Let L. he the t 1p;,ii lIneali silc (I the origina i-dinienisilnal region I he typical linear si/c it1

each one oft the P suhrgwmn, is 1, I II Pa' nd the tiltal traitlic ii\ ming it eaich clincentirati is S P'
\pph ing (it hkith le\ c tie fln~ hat the Lontrihin111 ot' the bottmn le\,el ito the B-termi is

P 1 I p i- 's /" Ib ip P )I I I

'A here we ha\ s how n t: phki ti the dependeceC o1 In or M . the ii a mberi te icii nals in e\ erN sabre-
gion The :(tntrihUtt~n (I the, tut lql it) the B-termn is

AXdding gives the 8-teormi itl the !twu-Ie\el regular hierarchicalI Si 5tTt1I

B i, v I/ S- i1pi ,--) p i a I (h lj(?i )[I-1 9

\Aohich P will gi\,e the least Cost t\Ao-)le, el s stcmt* Are two levels better than one?) [he answer ti the
second questio~n will folliw tromr the answer to the first, since when P= I or P=m the two-level system
tedutes toi a Ilne-level systemn This is reflected in (9) since I ( I )t) when we have to connect one
terminal. which is *uniform] - distributed o ,er its region, tol a station in the middle ot the region there
is nothing to do, and nil cost rS I ncuirred.

to find the best P that will minimr/e B we mjust sayr something about the /-function. F (i sint-
plctassume whtwe nilretefloing is a golod approximation

A~ssuming that P satisfies in >> P >> I , so that hoth PiJ and mn/ P are large. - weCanl sU bstiItate 101)1 into

9) and get

D~ifferentiating 8 with respect tio P we see that t/B (/P :1) when

V II g= IJ I+)rIl , I I( M, /P) p gp (12)

Substituttng the P determined b ( 12) into(l Ill) we see thait the ciost of the twoi-level sttucture. optim-
iied with respect to P. is proportional to nih. where
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Substituting /3=0 in (29) and searching for the best P, and P, we see that the cost of the best
two-level go-forward system is

D 8 L ,/2m (30)
4 9 T

Comparing (30) to (25) we see that, for large in, the two-level go-forward system is better than the
one-level system for all values of ST But when the system is very steady, there is very little to gain by
introducing a two-level structure.

Fig. 7 shows the optimal 3 as a function of' ST When the traffic is bursty we should use regu-
lar systems (/3=1/2) and as ST grows ,3 becomes smaller, and the best systems with a very steady
traffic are go-forward systems (/1=0). But Fig. 8 shows that the idea of choosing the best place for the
concentrators as a function of ST is almost irrelevant! Fig. 8 shows the cost of the two-level regular
system, the two-level go-forward system and the one-level system as a function of ST The costs were
normalized, for each value of ST by the cost of the two-level system with the best concentrator place-
ment for that ST as given by (29) when /3 is chosen to minimize D. Assume we have to design a sys-
tem with a given ST, and consider the following decision: we shall use the regular two-level system,
with the optimal number of groups for the given ST, as long as it is better than the one-level system.
Otherwise we shall simply use the one-level system. From Fig. 8 we see that if we follow this pro-
cedure, instead of trying to find the two-level system with the optimal routing policy, then our expenses
will be larger by at most In I A similar conclusion applies to networks [31: if the one-level system is
not good enough we may consider only regular multi-level systems, and lose almost nothing.

8. Distributed Dedicated-Line Networks

Until now we have only dealt with the centrahzed system case. That is. the sources of messages
were distributed, but all messages were directed to one destination, i.e., the station. We shall now begin
treating the case of communication systems with distributed destinations, which we call networks. When
analyzing networks we shall be able to use many of the results obtained for centralized systems. To see
how, consider lirst one-dimensional networks built with dedicated line channels.

Assume terminals are located at fixed interkals along our one-dimensional networks, and let /
be the distance between any pair of' nearest neighbors. Each terminal wishes to communicate with all
other terminals. The traffic of messages between any two terminals is a Poisson process. whose rate
depends only on the distance between terminals. and not on their identity. That is, all terminals are
identical in their statistical properties. We need the distribution of distances travelled in order to com-
pletely specify the traffic. However, most of our results will depend only on N, the average distance
travelled.

Let us assume that our network is 'infinite'. i.e., its total size is so much larger than N that an
insignificant fraction of terminals are affected by the boundaries of the network. It makes no sense to
talk about the total traffic carried, so let S, denote the traffic coming out of a unit length of the network.
D,, will similarly denote the budget invested in a unit length of the network.

Our motivation for choosing an entirely uniform universe may now be restated: If some termi-
nal had an especially large communication requirement, or if it was especially central in some sense, we
would naturally treat it in a special way when designing a good system We, however, are interested in
the differentiation between terminals that appears when hierarchies are built in an entirely uniform
environment, even though no terminal is special to begin with.
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Fig. 4 shows the quality of the one-level, two-level and three-level regular systems for 1024 ter-
minals. When the traffic is very bursty the three-level organization is better. When ST grows its
advantage becomes less pronounced. and if the curves in that figure were drawn fine enough we could
have seen that the two-level system and then the one-level system takes over. Fig. 5 shows, for a three
h. ,l organization, the ratio between the time spent in every level and one third of the total time spent
oi the s.,steni Fig 0 shows, for a three level (organi/ation, the ratio between the number of branches
in every level and in I In both ol these last two, figures, the convergence of all three curves to i con-
mon point when ST-- is a manifestation of the balanced nature of bursty systems under optimal capa-
cilt. assignment.

Multi-klycl regular systems are much hetter than the one-level systern when the traffic is
burst\ 'hy, do they become progressi\el. worse than the iinc-levcl s stem as the traffic becomes
steadier'

In the regular sy stcms the concentrators are placed in the middle of their group This means
that some messages vill take a route which is longer than the direct distance from their origin to the
stalion When the traffic is burstN. this effect is negligible compared with the gains resulting from shar-
ing the long lines. But when the traffic is steady, sharing leads only to a small gain, and the extra dis-
t.mce travelled is significant. When ST is very large, we see by comparing (24) and (2) that the two-
lev.el regular sstern costs LS/4 PI) more than the one-level system Ihis extra cost is a direct expres-
,ilm of the extra distance travelled lilalf the terminals, i.e.. those terminals whose concentrator is
Iurther avay frorn the station than they are, will hatye to Itavel an cxti distance equal to twice the dis-
,0cc lo thcii coIcentratio rhe aicrage exta distance travelled is therefore simply the avcragc

tei n1nal-concentrator distance, which is Cqutal to L/(4 Pi )

c can dcci ease the extra distance travcllcd by placing the concentraus., nedrr to the staton Let us,
fr simnplicitv adopt the poicy that all concentrators will be placed so that a fraction 13 of their group
will he on the side near the station. In analog, with (26) wc gecl that the cost of the tw(i-level systern
huill with this polk\ is

f) 4 .S( 1 4413', PII + H (24)

w4here

AWhen ji= 1/2 this equation reduces. of course, to (26).

I or a given value of ST, which P1 . P: and /3 will givc the least cost systemi? [or a given 03.
linding the best P, and P?, is eas ,, and the best l3 can then be I(ound numericall. As is intuitively
clear, f'or bursty tralfic the best 01 is equal to I/2 When the tiallic becomes steadier the best 13
hcimcs smaller. aind when the trallic is cxtrncl stead, the best I, is equal t(i ,cro.

It is interesting to note that, lor an\ gicn ji, the sstm v it h the optimal gioup si/e obeys ahalance principle Ihe excess budget is in\ estcd cqually in the Iio lcel', and the average delay in the

two levels is the same

When /1) the systcm has a nic pr pcrt\ h %iiwe loiimalic thus \ communication sstem in
which the length of' the riiute taken by in\ m ssiCe is equal I,) the diicct distance from its source to
dest ination will be called a to-/orward sv siem
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Let D be the amount of money invested at the concentrator station level (the top level) and
D, be the amount invested at the terminal-concentrator level (the bottom leel). .et T and 72 be the
average time a message spends in the top level and the bottom level respectively From (23) and (27)

we get the following

D) - LS/4 T, 9 ST 26)
D2 - LS/(4P I  7, I m

I he first equality is not specific to regular systems. It follows directly from (22) thmt whenever \h con-
sider two sets of lines in a communication s.\stem with an optimal capacit. assignment, the ratio of
their contribution to the average delay is equal to the ratio of excess the budget invested in them. [hc
second equality sign shows hou both of' these ratios depend, in a tvo-level regular system, on ST

When ST0, (27) sho\,s that PI=P 2 and (28) is then iust a specific case of (8), every regular
two-level system must be balanced when bursty. When the system becomes less burst), I'1 /P2, 717 7

and 1)1,'12 grow. There are more branches than leaves per branch. more of the budget is invested in
the top level, and the message spends more time in the top level. When ST becomes large enough.
i.e., the system becomes very steadY, we get 'ronm 127) that P2 is less than one! Ibis means that fr
large enough ST a one-level system will be better than a two-level system. ()ur optimized two-lcvel
system is trying to achieve the one-level performance by eliminating' the unnecessary bottom level, (or
at least by lessening its effect.

r-level regular systems can be optimized by applying (27) and (28) to every two consecuti\e
levels As an example, let us solve the three-level case.

A three-level regular system will have P, branches at the stem, each of which splits into P,
twigs, each of which carries PI leaves. The two top levels can be considered as a two-level regular sys-
tem with P1 P2 terminals. The two bottom levels can be considered as a set of P, identical two-level
regular systems with PPj terminals, each with itotal throughput S/P I. PI,P, and P, must satisf*\

PIP 2P I= /1

Applying (27) to the two top levels and to the two bottom levels we get

P, L) S(7 1 +"T,)
- =1+ - -
1', 8 PIP,

P2  9 S(7'T,')
1+

P1  8 PPP 3

where TI, T2 and Tj are the average times spent in the top, middle and bottom level, correspondingly,
and they satisfy

T, + T 2 +" 3  T

Applying (28) to the two subsystems, we get

72 [ 1)2 12

T t I PtI

We therefore have six equations for six unknowns While we do not have an analytL solution lor
them. a numerical one is easy to obtain.
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,= S, - (22)

w here

YS ', 1, (23,

and

STZ

A certain minimum budget is necessary for carrying the given traffic. c\vn iffwe are willing to tolerate a
\erN large T D, is the exss budge. invested in order to make the dela.y finite

We shall noiA consider in detail the case of one-dimensional Lentralized systems, in which the
cost of ai line is directly proportional to its length. (i.e.. a= I ) Let our m terminals be equally spaced
on a line segment of length L. and let tral]ic be evenk divided among them. If we create a one-level
star network (i.e., connect ever. terminal to the station by a direct and private line). assume that
lt>> I ind substitute intcgrals for sums, we gel from (23) that the cost of this one-level system is

- 4 8 S± (24)

What would the cost he it we could have used a single line ser\,ing a a single MIM/I system.

If we have the samc load S, and the aciage distance a message has to travel is 1./4 as abox c,
then in order to get the same 1Ifrom an M/M/I system our budget will have to be

-1 - I -1 (25)

I)eliiwng the qualih Q of at s stem to be the inverse ratio between its cost and the cost of the best pos-
sihle M/M/I system, and dividing (2i) h (24) xwe get that the quality of the one-level star system is
IIor 1n >> I)

= ~ '4 1
ST + 8m/Q)

Consider now the regular two-level systemn with P equal groups and P2 terminals in each
group Assuming that the star network is built at both levels. Ac get ronm (23) the lollowing relation
het',een total cost and performance of this iwo-level s,,steim

1) / H -)4 - (P' I'l (26)
4 P, 91

[ or ,t given .S and 1. what should P1 and P2 be to minimize U.' Treating P1 and P2 is real variables we
scc that the optimal P, and P, are related through

P 9 S T- I 4. - - . (271

41



The generalization to r levels is immediate [he best r-level regular system must be balanced
That is, PI =P 2 ..... P, n n i ' and all individual channels at all levels have the same capacity The
relationship between cost and performance is

D i it '

rhe best r is easily found to be equal to /it m/ (h 1). and when this number of' levels IN Cd

we get that for all 1 P,= ei. and that

D I +-n (ra f 20))

Kamoun 1151 found similar results when optimizing hierarchical communications networks with other
objectives

If spatial reuse is not perfect and there is some interference between groups we have to modil,
our formulas slightly. Assume the groups at all but the top level can be colored with q different colors
so that no two groups of the same colors at the same level interfere with each other In an r-le'.el w.

can now write 7'k( + - - and I) 1 1 1  q P2( + + P, (r' ki n Im I / ng1 h ' I I I

D by choosing C given Twe get 1) ( , 1:/I 1~ 1 -h qP I I Iq I he best

P, satisf*' P, = qP. qP, and using these best ',Alucs we have

O { 4~ ri'( mc' I)I 121)

We expect q to be a small integc . When )n and r grow (21) will give a total cost almost q times greater
than that given by (201 But in both cases we see that when using dedicated broadcast channels and the
best number of levels the cost of' a ver bursty system grows like 1/1,11, i) h

A and is independent of the
geometric dimensionalit of the sstem The cost of regular hierarchical line networks, given in
Theorem 2, depends very much on the the dimensionality of the space in which the terminals arc dis,-
tributed. It seems, therefore, that dedicated broa&a.st channels ha'.e a signiticant advantage over dedi-
cated lines, when building large bursty systems distributed in two or more dimensions.

7. Hierarchical Organization of Non-Bursty Line Systerns

So far we have dealt only with extremely burst systems (an a hierarchical organization
improve the performance of systems that arc not burstk

To answer this question for line networks wc ha.e to solve the capacity assignment problem
when the traffic is not extremely bursty. This is almost impossible 1c do explicitly unless the cost o1 a
line is directly proportional to its capacity. which wAc shall assume in this section (That is, b= I)
Another greatly simplifying assumption we adopt is the independence assumputon 1161. According to this
assumption we analyze the network as if the length of each message is chosen and rechosen mdelpcn-
dentIv, at each step along its path, from an exponential distribution; and as if arrival of messages at each
line is a Poissen process independent of message length. Let C,,L, and S, be the capacity, length and
traffic of the i-th line. The average message delay in getting across the t-th line is then modelled hy

T, - C,_. T1 and the source-destination delay, averaged over all messages. is T- ES, TS. The cost of

the t-th line is D,- C,L,". Minimizing the total cost D = ED, while T is given by choosing (',. or
minimizing Twhile D is given, we get the following solution for the optimal capacity assignment 1161
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o STATION
@ REPEATER
O TERMINAL

C1 IS DIVIDED INTO P1

C1 DEDiCATED CHANNELS

C2

00~ 0 0 0 0

EACH GROUP USES C2 INDEPENDENTLY, AND DIVIDES IT INTO P2
DEDICATED CHANNELS

Figure 3. Dedicated Broadcast Channels in a Two-Level Organization.

When the Iralic is very bursty the average time spent in this two-level communication system
is given by

T = kl('1 +

%here k is a constant depending on the scheme used for splitting a channel into dedicated subchannels.
([or Frequency )ivision Multiple Access kl, for Synchronous Time l)ivision Multiple Access with in
%ubchannels, k--ln!2+ I/nm), The cost of this tvo-lcvel system is

D Pl('I"+ P2('2 h

Our design task is to minimize the necessary budget D, when f and S are givcn, b) choosing
('1 and C2, and by choosing PI and P2 subject to PP 2 = in,

ly symmetry it is obvious that when in>> I and two levels are better than one then the best
choice is P) - P2 and C' = ('2. That is, the best two-level regular hierarchical broadcast system must be
balanced. Using these best values for P,.P 2.('I and ('2 we get

D 2h 1 ,'2
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to the best, ic.. least c(sIt. ',N'rin It 1', qutLiC Lc',Ic al i .i ht .netcrator should not be placed in the

center of* its group but clo er ti thu \iati(+i It i tLlii pi,\,,Ihlc that gioups lurther awa. 1rom the slta-

tion should he larger and tht 1ic,,,,tgc'.c utinng tron ,lr huh Ud Lross more levels oin their war to thu
stati)nt (I hi', will nalural1h It)teur il rvgl.ii , ,'ttws i ) fiw cii w, note that concentrators will be Coloi-
cated with ,onic oIf the Icninia a ,hoNkn in I ig 2)

Figure 2. Hierarchical Organization of a One-Dimensional Dedicated Line System.

'Some specific heuristics that pertuth the rgU illi stioctmc slightly were analv,,d in 131, hut ()nl.v a con-

stant improvement was obtained e ,ISpect tHIat1 no( s' slIt will have it L)st growing mitre slowl\ with

ti than in " " (See also discLIssIOn it end ()I* ''ct(In 81)

6. Dedicated Broadcast ('hannels

In previous sections we saw that i hierarchicial oigaii/ation can signilicantll improve the pciloia-
mance of a system based oin dedicatcd lines, especiall. when the sstem is hursty. Ihe basic cause f'or
improvement was that instead of having long lines with a small capacity dedicated to each indi idual

terminal we could use short individual lines. The long lines were shared by more tratlic, and the capa-
city invested in them could, therefore, contribute more to improving the performance.

If the communication resource we have is a broadcast channel, whose cost depends on capacitv
only, it seems that channels used For short distances are just as expensive as those used for long dis-
tances. So how can a hierarchical organization help? The crucial fact here is that broadcast capacity can
be reused spatially. That is, it can be used independently and at the same time in two or more separate
areas. A long range transmission prevents others from using the channel in a large region, and this
distance-related 'cost' will be explicitly accounted for in the capacity allocation process

Lel us, once again, create a two-level regular hierarchical systen h dividing the ot terminals

into Pt groups with P2 terminals in each. We shall give each group a concentrator, hut shall now call it
a repeater, this being a more common name when radio networks are discussed 1141. l)dicate a capa-
city ( to every one of the repeater-station communication subchanneis. l)edicate a capacity ( to

every one of the terminal-repeater communication subchannels and assume that these subchannels can
be used by every one of the groups to communicate with its repeater, without any interference from

other groups. That is, we assume spatial reuse can be done perfectly, without any waste in capacity or
degradation in performance. This is a reasonable assumption if, for example, each of the terminals has
a directional antenna pointing at its repeater only ir if the repeaters are separated b , hills, so that every
transmission is heard only by- the repealer to which it is meant. Fig. 3 shows our model for this twi)-
level system.



Consider the regular hierarchical systems built with a sLar network at each level. What will be the effect
on cost if we change the specification of the allowed delay variance? Consider two extreme cases: In
the first, only the average delay is specified. In the second, let us assume that the average delay
suffered by messages from any terminal in crossing a given subsystem is the same for all terminals.
The comparison between these two alternatives depends on geometric constants, which we have sys-
tematically ignored until now since expressing them analytically is usually impossible. To simplify the
geometric calculations assume, in this section only, that the region over which terminals are distributed
is an n-dimensional sphere, even though a sphere cannot be divided into equal parts similar to itself.
('onsider first a one-level star network with only the average delay specified. The B-term can be
immediatek derived from (7). Assuming the number of terminals is large and approximating sums by
integrals we get

B 4  , ,(b+l) _ an,S) L' 'n(h+l) +-a

and

1)4 B
(ST)

\here the subscript ",4' stands for 'a~erage"

When a uniform delay is specified D can be written directly, since all channels must have the
same capacity, and we get

Dt = - '4verage of L, - L n
Tb 1 7" a+ n

where the subscript '0' stands for 'unif'orm'. Forming the ratio we get

DL _ (b+l) i-a it__ (191
D, n(h+l) a +-/

Iquation ( 19) was derived by considering one-level systems, but it is valid when comparing r-level sys-
tems and when comparing systerns with the best r, which is independent of' the delay distribution
specified. lquation IH L shows, therefore, the additional cost If demanding a uniform delay versus
demanding only an average dela.

flow large is the ratio given by (19)" It has its largest value when a=b=n=l, and is then
cqual t) 9/8 I hat is. if a system with only [he average delay specified is not acceptable, the delay can
he made uniform at an additional cost of no more than 125 per cent!

5. A Lower Bound?

Theorem 2 shows that by using the heuristic regular hierar.:hical constructions the cost of very
hursty centralized dedicated line systems can be made to grow only slightly faster than m -  . (The
growth of cost with m can he bounded from above by an exponent of i arbitrarily close to I-a/n,) Our
regular hierarchical structures have the following properties:

( I ) A concentrator is placed in the middle of each group

12) The terminals are divided and subdivided into equal groups.

(3) Every message crosses the same number of levels on its way to the station.

these properties were adopted in order to simplify the analysis of regular systems, but the.% do not lead
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The argument of the previous paragraph has the flavor of an existence proof: It shows that by
having enough levels the cost can be made to grow as an exponent of m arbitrarily close to I-a!n. As
in becomes larger, using more and more levels is justified. What is the best number of levels for a
large but fixed in? To answer this question we must consider the constant coefficient multiplying ink.,
This constant, which was ignored until now, grows with the number of levels, and therefore tempers
the trend towards more and more levels.

Ihe /-unction and cost of a system consisting of r levels, each of which is built according to a
given design procedure, can be calculated explicitly. Let P, be the number of terminals per group in
the i-th level, starting from the top. Rather than trying to optimize the overall structure directly. note
the following: Every two consecutive levels in an optimized r-level system must be optimal as a group
of two-level systems. Equation (12) can therefore be rewritten as

gb+ip,-I+a "=g - I+ a/lb+tP,+ (15)

and (12) can be generalized into
8,
--- I - (1-a/n)/g (16)B, +i

where B, is the contribution of the i-th level to the B-term. From (15) and ( 16) we get the following.

Theorem 2: A design procedure for n-dimensional centralized systems whose cost is proportional to mn'

where g> I-a/n can be improved for large m by a multi-level regular organiation.

When I-a/n O the best number of levels is given by
r (b+lI)/g In (g/{g-i+a/n)) = (I -alit) In (m) (17)

and the cost of the system, when using this r, is proportional to

(jI  I . 18

When I-a/n=O the best number of levels is given by

r = g-In(m)
b+l

and the cost of the resulting system is proportional to lln(m)]b+i. In both cases, when the optimal
number of levels is used, the number of lines in all groups at all levels is the same, and must thereforebe given by mi /

Proof" See appendix.

When a is smaller the best regular hierarchical system has fewer levels and leads to smaller
improvements, since it is harder to save by shortening individual lines. When b is smaller the best sys-
tem has more levels and leads to larger improvements, since common large capacity lines become more
economical.

Example 2: Let the given design procedure be to build a star network. That is, g- I. Let a and h be
equal to I. From (17) we see that the optimal number of levels for a two-dimensional system is given
in this case by r - log16m, and that we should have 16 lines in every group. The cost of the resulting
system is

Di 1,4 -

where we use = to denote 'is proportional to'.
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h 9 13
2g- l+a/n

When g> I-a/n we have g>h. That is, when using the best P. as given by (12), we have a two-level
structure whose cost grows with in more slowly than the cost of the one-level structure. When
g> I-ain and in>>I our use of the approximate (10) is consistent, since our best P does satisfy
M >> P >>I We can summarize the above discussion of two-level regular hierarchical systems by the
follhwing.

Theoremn I: A design procedure whose cost is proportional to mn' where g> I-a/n can be improved for
large m by applying it separately to each level of a two-level regular structure. The best P (number of
groups) is given by f12). The cost of the resulting two-level structure is proportional to mh, where h is
given by (13). When the best P is used, the contribution of the two levels to the delay, to the cost and
to the B-term satisfy

,rop g- I + / i (14)

f'roo. Substituting (12) in I II) "e get ,,I=+a/n )/g The other two equalities are true
henever capacity is optimally allocated, as shown in (8).

We shall paraphrase ( 14) b- saying that the optimal two-level regular structure is balanced. The

contribution of both levels to the delay and their share of the budget must be in the proportion given
b. ( 14). The right hand side of ( 14) decreases when g decreases. P also decreases with g. and there
%kill be less groups in the top level. We may sa. that when g is small most of the system migrates to
the hottom le\,el, and that when g is small enough t%-.o levels become unnecessary.

Ivamph, I 'hen the original design procedure consists of building a star network we have g=l. and
(1 3) reduce, to h tlv (a+ n). That is. the cost of the optimal regular twMo-level star system is propor-
tional to in" "", while the cost of a one-level system is proportional to tit. When ,g=1 (14) reduces

LI al,,, /),,,p a

and we get that the two levels must be balanced in a way that depends on the dimensionality of the sys-
tem and on the economy of scale of long lines, but is independent of the possible economy of scale
in ol, ing capacitY.

Li

If' two levels are good. will more levels be better'? Equation (13) already contains the answer:
Decomposing a given system into two levels and applying the original design procedure to each can be
considered as a new design procedure. Applying this new procedure to two levels is equivalent to
applying the original procedure to four levels. \k nen g> I -a/'n it follows from (13) that h > I -a/n
and therefore four levels will he better than two when ti is large enough. In general, let g, he the
power of in characteriing the resulting cost and /-function when the given design procedure is applied
to 2 levels. [quation (13) can be rewritten as

where g,, is the powcr of in characteri/ing the direct application of the gi en design procedure to one
lcevl It is easy to see that when g> l-a/n the sequence {g,, is monotonically decreasing and con-
verges to I al',
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Consider a network in which each terminal is connected to its nearest neighbor on each side, a,
shown in lig. 9.

• " 0 0 0 0 0 o

Figure 9. The One-Level One-Dimensional Network.

Let C be the capacity gicn to each line. ,e shall CaIl this network the one-level nctwork Lver mes,-
sage goes, on the average. through NV/ lines on its wav from source to destination, and the tr.1l1h. In
each line is NS,/2 Hence, the average message delay is given by

I _ _ _ // .t11
( - ,NS,,/2

Assume that the cost per unit length of a half-duplex line is equal to its capacity, i .e. a =b . I o cal-
culate the budget per unit length necessary for satisfying a given Tand S %ia the one-level system, \kc
solve (31P for C as a function of N, S,, and T and then multiply by two, since every unit interval has
exactly one line carrying traffic in each direction. The result is

D,, = NS,+ 2,M4/T 32

where M=N/I is the number of terminals contained in the average path.

It seems that NS. the traffic coming out of a portion of the network whose length is equal to
the average distance travelled, is a natural traffic measure in a one-dimensional network. (After all. S,,
has the dimensions of traffic per length, and what other natural length except N do we have to multiph
S , with in order to get something with the dimension of traflic?) The natural dimensionless parameter
we shall use to characterize the traffic is NS,,7T When it is small we shall call the traffic bursty. and
when it is large we shall call the tralfic steady.

Let us double the number of terminals per unit length, while keeping the tralfic per unit length,
and the average distance travelled by messages constant. Each terminal will now generate half the
traffic a terminal generated in the original system. The new network has the same N and S, but A4
became twice as large. M plays in (32) the same role that in played when we discussed centralized sys-
tems. It is a natural measure for the network being distributed, and characterized the extra expense
incurred because terminals are not all at one place. We conclude from (32) that the fact that the net-
work is distributed poses no problem when the traffic is steady. (When NS, T>> I the second term in
(32), which is the only one that depends on M. is negligible compared with the first.) But when the
traffic is bursty, the system cost is essentially proportional to M, i.e., the cost is then strongly dependent
on how distributed the system is.

Can hierarchical organizations help networks? Can we use concepts introduced previousl For
centralized systems to characterize good hierarchical networks'?
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9. Hierarchical Line Networks

Consider now n-dimensional networks in which the cost of a line is, once again, equal to the
product of' the u-th power of its length times the b-th power of its capacity. Let N be the average
source-destination distance to be travelled by messages, and assume the size of the networks is much
larger than N, so that edge effects can he neglctcd Let M be the number of terminals in an n-
dimensional cube of size N. The volume occupied by every terminal has therel're a typical linear size
equal to N/Al'".

Let us form a one-level network by connecting every terminal to a small number of near neigh-
bors. The typical line length is N/All", and every message typically goes through M' " lines. The cost
per unit volume is therefore given by

,=MI N ] M'," Na Min+b a,/n
N A-l TI T

To build a hierarchical system we shall introduce stations, connect every station to a few of its
near neighbors, and assume messages are routed thus: Every message will go from its source terminal
to the nearest station, from it to the station nearest its destination using the inter-station lines, and
from that linal station to its destination Let L be the length of the typical inter-station line, and let
I/L" be the density of stations.

When networks are ver. distributed (i.e.. M>> I) a good placement of stations will usually
satisfy N>> L >> N/M1 ". We shall call the inequality N>> L the assumption of long distance tirav
and consistent use two of its implications The portion of traflic that can reach its destination without
getting to any station is negligibie, and the average line of sight distance travelled by a message from
the station near its source to the one near its destination is approximated well by N. The assumption of
long distance travel allows us therefore to ignore the distribution of distance travelled. Considering this
distribution is of no importance when optimizing a multi-level structure with M >> I [31.

It' we assume that every terminal is connected to its station by a direct line we get a two-level
systom. Using the assumption of long distance travel we can calculate its cost thus: Let 1IT, and 1IT 2
he the typical capacity of lines in the inter-station (top) level and the terminal-station (bottom) level
respectively. A typical message takes 2 hops on lines in the bottom level and N/IL hops in the top level
(ignoring a small geometric constant.) The average time a message spends in getting from source to
destination is therefore

T~ L~T, 42 T)
L

Let there be p terminals per station The typical length of lines in both levels is L, and the cost per
unit volume is thcielfore

N " P 1 T'

minimizing 0, hy choosing T, and T, given 1"we get, in analog to (7),

D, __- , g IT

where B- (N/I) Il/pb"+ ? +i+ 2 1,b1', he p that will minimize D,, must satisfy
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n + b - a (M ,p~h " 2 ,1) 3 )
1----

When Ihis best p is used we have, independently of the geometric constants neglected when writing
(33), that

D' -
(34)

Dholt- + b-

D, T b

Equation (34) shows, once again, that the best two-level system is balanced, but the optimal
investment ratio for networks, given in (34). is ditferent from the optimal investment ratio in central-
ized systems, given in (14).

r-level networks, with r- I levels in the terminal-station part, can be solved by applying (33)
and (34) to the top two levels, and by applying (15) and (16) to any other two consecutive levels. But
the network with the best number of levels can be more simply characterized by applying Theorem 2 tu
the terminal-station part. i.e., by assuming that every one of the centralized systems connecting termi-
nals to their station has the best number of levels Assume that the inter-station distance is L and that
the number of terminals per station is p. When a en we get from (18) that the cost per unit volume of
the terminal-station levels is

Using nNn= M£" to express L in terms of p we see thtit when p >> I this cost is a slowly growing func-

tion of p. proportional to p"'" I1p 'I alIh4+, - I) . The top-level cost is, when p>> I a slowly

decreasing function of p. and the best p is therefore of a magnitude similar to M. When the traffic is
very bursty and M>> I the cost per unit volume of a network with the best number of levels can
therefore be roughly gi.en by

D,, " 4 (36)

P t

Continuing the discussion of a possible lower bound for the cost of line systems started in section 5 we
can say the following: If centralized systems existed whose cost grew more slowly with p than p' "..
then instead of (35) we would have that the cost of the terminal-statior, le,els is a decreasing function
of p . The overall network cost would then be a decreasing function of p and of L and the best L will
satisfy L >> N. While not impossible, it is very strange that the best network will force a message to go
to a station that is much further away from its source than is its average destination.

In analogy to (36) one can see 131 that the cost of \,ery bursty broadcast networks and of one-
dimensional line networks is proportional to [log(,l)]I *

', and broadcast channels are once again supe-
rior to lines for a bursty system distributed in more than one dimension.

10. The Geometry of Networks

In deriving (36) we neglected various geometric constants, since we wanted to show in the sim-
plest possible form how the cost of very bursty networks depend on system parameters. (While (36)
does not contain Su, it is valid only when N"S,,r<<I.) [low will the geometry of the top level
influence the cost of networks'? We shall treat only the case of two-dimensional line networks.

I S2 - .- ,MMM11t



It is well known (171 that there are exactl three regular tessalations of the plane: i.e., three
ways to cover the plane with identical regular polygons. If we place a station in the middle of each tile
and connect it to its nearest neighbors we get the three networks shown in Fig. 10. We shall call them
the square, triangular and hexagonal network, where the name applies to the regular polygons created
hy the lines in the network. Note that we do not draw the ies (the regions around each station), but
the dual graph showing the communication lines between adjacent stations. Ior example, tessalating
the plane by hexagonal tiles produces a beehive-like structure which leads to our triangular networks.

Is there a common basis for comparing these three tessalations. For e preliminary comparison,
let us assume that all traffic originates at the stations, and is destined to many points in the plane, not
necessarily to other stations in the network. Every message will use the given network to arrive at the
node closest to its destination. We shall not consider how the final node delivers each message to its
exact destination at this time. Let us also assume that the distribution of traffic coming out of a node
has a radial symmetry, and that the average line of sight distance from the source node to the destina-
tion node is N. The average distance actually travelled by a message will be larger, because there may
not be a line directly to the neighborhood of its destination. Assuming the average distance travelled is
much larger than the inter-node distance we can say that the distance actually travelled is 8N. where 8
is a characteristic constant for each of the possible networks.

In the square network we have A f 3 cos +- Isinl IdH - = 27 A similar simple cal-

culation gives thai in a triangular network (5 I 10 . For the hexagonal nctwork we used it Lomputer
program to lind that h is approximately equal to 1.30.

let S,, ,and D, denote the total traffic and budget per unit ar'a. Let 4 be the area per node
Fach node will generate new messages at a rate of AS,. If L is the internodc distance then the number
Of hops taken by a message, on the average, is hN/L. Therefore the total traffic passing through each
node will be AS,,ANi/L messages per second. Let E be the number of nearest neighbors each node has.
which is also the number of (half-duplex) lines per node. The total trallic per line must therefore be
AS,AN/Le If T is the required total average delay, the delay suffered when crossing a given line must
be TL/$N, and the capacity necessary for each line is

C -AS 8N ,+ (37)
"L E LT

Let us first assume that a=bl. The total cost per node is then found by multiplying (37) by L, the
length (of every one of the lines, and by (, the number of lines per node. If we divide by A. we find
the cost per unit area to be:

D, = 8NS, + "-h' (38

TA
Let M be the number of nodes in a square whose sides are equal to V. I he area per node is then
N/M. Substituting this for A in (381 we get

diM I (39)
D,,= NS,, + - N 7*

In a two dimensional network, the natural traffic measure is N 2S,,, and the burstiness measure is
N 2 ,5, T When the traffic is very steady only the first term in (39) is significant. The best network will
then be the one with the smallest , i e., since the triangular network imposes the least extra distance
on messages. it is the best of the three for steady traffic. When the traffic becomes very bursty
(N2S,,T<< I) only the second term in (39) is significant, and the hexagonal network is the best
because it has the smallest eh.
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Figure 10. The Three Regular Teselations of the Plane.
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Fig. I I shows the cost of the three networks, nornalized by the cost of a hypothetical network in which
8=.E-I . As expected, the triangular network and the hexagonal network are best when the traffic is,
respectively, very steady and very bursty. It is somewhat surprising, though, that the square network is
never the cheapest of the three.

For general i and b, i.e., not necessary equal to I, we get from (37)

D,, -IEL" AS,N/LE +6NiTL

L does not in general disappear from the cost formula, but we can write A =-qL 2, where 1 is a con-
stunt, depending on the geometry of the network, and given in Table 1. When comparing the three
regular networks we shall assume that 4 and the density of terminals are common to all three. We
then find the following: When the traffic is very bursty the best network is the one having the smallest
Crl.lh 0'2W. When the traffic is very steady, the best network is the one having the smallestI h Ib-,J 2 "

It is quite intuitive that as b grows smaller the advantage of the hexagonal network grows, since
it concentrates its traffic on fewer high capacity lines that are becoming relatively cheaper. As a grows
smaller the advantage of the hexagonal network decreases, since its line channels are shorter. Using
the numeric values for 8 . and T) we find that of the three regular networks, the hexagonal is always
(i.e, independently of a and b) the best %hen the traffic is very bursty. When the traffic is very steady
the hexagonal network is better when b < 0 65 + 0 19a. otherwise the triangular is better.

There is, of course, no reason to limit our consideration to the three networks in which all
nodes are equivalent and in which lines connect only nearest neighbors. When the traffic is steady, we
can connect every node to more of its neighbors, in order to lessen the distance messages have to
travel, IHowever, since the triangular network already has =1.10, the most we can gain by introducing
more and more lines is I0"/O When the traffic is bursty there is room for a lot of improvement, and
that is where hierarchical structures become interesting.

Newell 1181 gives a general discussion of networks with an economy of scale in their cost. lIle
points out that even if the node placement and the traffic requirements are symmetric, the best network
will in general not have the same symmetry. For example, the two-dimensional square network with a
large M aind a burst traffic can be improved by deleting every other vertical line The resulting struc-
ture. shown in Fig. 12, forces some messages to go an extra distance, until they can find a vertical line.
But as a result only hall as many vertical lines are necessary, and when the traffic is bursty this will
more than compensate for the extra distance travellj

In our model there can be three independent sources for an economy of scale: when b< I large
capacity lines are relativl, cheaper, when a < I long lines are relatively cheaper, and when the traffic is
bursty sharing unused resources leads to signifcant economies. What is the best network structure, as
a lunction of' a. h and burstiness? Newell, in tie same paper quoted above 118], points out that there
are no efficient algorithms for solving large minitization problems when the cost functions are con-
cave. i.e., when there is an economy of scale Symrnetry cannot be used to reduce the complexity of
the problem, because the best solution will not necessarily reflect the symmetry of the traffic require-
ments. We shall not. therefore, try to find the best network. ('an any conclusions be drawn by consid-
ering the geometry of our heuristically constructed hierarchical structures? In the previous section we
ignored the geometric constants, but let us now bring them into the treatment of two-level networks,
when a-h=l and when the traffic is not necessarily bursty.
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Figure 12. Improving a Square Network for Bursty Traffic.

l.et D), he the cost per unit area of the t)p level (the station-station level), and let 71 be the
average time each message spends in the top level, (38) applies directl. to the top level. Let 1. be the
distance between nearest stations, and let .4 be the area per station. %where A = vIL 2. By definition. N is
the average linc-of-sight terminal-to-terminal distance a message has to travel. When ,V > L, N is also
the average stat ion- to-statlion distance at message has to travel Theref'ore, f'rom (38). the cost per area
of the top level is given by

/)I --- + diN -(40)
1112 71,

In order to calculate the cost ot the bottom leel. e must find the acrage terminal-station distance. If'
the area assigned to a station was a circle to diameter 1. this aerage distance would have been L13. In
practical networks with inter-station distance L the average terminal-station distance must be larger, and
we shall write it as 4L13. where ; is a constant to be determined. The average square root of the
terminal-station distance will similarly be written as 6(415)\1v2, where is a constant.

A summary of the numerical coefficients characterizitlg the networks built with the three regu-
lar tessalations at the toip level is given in Table I Xlso included in the table is the hypothetical, but
impossible. 'best' network, which we use I ,r normaliing the cost in Our figures.
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lahie I

(Cllicients Characterizing the (;eometrv or lwo-l)imensional Networks
square triangular hexagonal 'best-

actual distance/line of sight 1.27 I I0 1.30

ilines per node E 4 0. 3 . -

1 area per node i /_ -2- 33.2 V 3... 3'
iterlrnal-stationdistance 1.148 1.05 1.3I

. . .. . ... ..distance-. - 1.070 .... 26 1.. . 8 .

Let 1), be the cost per unit area of the terminal-station level, and let 1, hc the average tllic

each message spends in this level. Since every message goes through this bottom leel twicc, mc al
each end of its path. and since each terminal has two hall-duplex lines, l' ir sending to and rcci ,in
from the station. respecti elv, we see that

L 32A4
1)2 = 2.S,, - + ! L T (41)

3 25N' T2

where, as before, Al/,V2 is simply our way of writing the terminal density. For a given L the total cost
of the two-level network can be obtained from (40) and (41) when minimizing DI41) 2 by choosing 1
and T2 subject to T = T,+T. Let x be the ratio between L and N. that is..x is the interstation distance
measured in the natural distance unit of our networks. The total cost is then

D,, -N., (4i-2 3) v - i3 1 1'E 6j'? + 4 t5j Al/ (42)

Equation (42) gives the total cost of a two-levcl two-dimensional networks as a function of 'N. the ratioi
between the interstation distance and the average distance travelled by a message Which . will nunni
ize P,, [his best x is casil flund numericallhv, and lFig. 13 shows the cost of owdo-h.el s%)stems, in
which the top level was a square. triangular or hexagonal network 'he cost of these nt (irks, "lic
the best x was chosen for each as a function of N2.S,, 1. was normialited by t.he cost of the he polhct.l ,A
'best' network defined by Tahle I, with its best x as a function of .'2'S,, 7'

Once again, we see, that the square network is never the best. 'hen the trallic is hurst\ the
hexagonal network is best, and when the traffic is steady the triangular network takes over. Comparing
Figs. I I and 13 we see that in the two-level system the triangular network becomes better than the he\-
agonal one at a smaller value of N 2S, T than in the one-level system. [his is because we simply ignored
the question of how messages arrived at the stations in our treatment of one-level networks In )ul
model for two-level networks we explicitly took into account the terminal-station distance. If we coni
pare our three networks with the same area per node we see that the triangular network has the smal-
lest average terminal-station distance, and the hexagonal network has the largest average distance Ihis
distance is irrelevant when the traffic is bursty, but gradually becomes important as the traffic becomies
steady, and is the reason for the earlier superiority of two-level triangular over hexagon.,l nciworks

Figs. II and 13 are both drawn for M = 1024. If we consider a d]erent it the one-lcvCl LL i\,s
of Fig. II will simply be shifted along the N2

S I axis, while retaining theii shape the shape of the
curves describing the two-level networks is not inviriant when Al changes, but the general k haracteris-
ties were checked for A-l6. 256, 1(24, 4096 and 16384. and they are the same iriangulai tw ,-lecl
netwoiks tire good for steady iafllic, hvxagonal nelworks aii gooid I'r hursl ial i. ind ihc ,quJi1c net
works are never the best of the three.
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hen the traffic is burstv and VI is large. mie thanl twoi lc\ cls "ill he t\ en bet A hit w Hl
be the good geormetr\' In the pre~ious section. Ahile dciiniog 1;01. A.: th,ei khcn the n(lhi I,,
,er\ burst, and when A>> I the network Cost is dominated k the ICrminal-stan' r 1 p If hilintodt(h
atel l'ollo'ws that the best network will be the triangular, which has the smallest er.rminal-slaiin .i .0
age distance when the area per station is given. Combining this COnclusion with the pi.x IoJs di' sJc,s"i
of Figs. I I and 13 we are tempted to conjecture that k hene. er the best nunibet ()I h.xels. s a lim I,,'i

of burstiness, is used. the top leel should hae the triangular geomnwtr\ I he tip lc,cl will ei t: hk.
stead\ enough. or else it will be iust one of many l"ev ls, and the .ost of il hut the tip Ic' \i will m,,ke
our triangular network (with its hexagonal tiles) the best. I'or the same reason It IS natlur, 10 ISNLIh
that the top leel will always reflect the translational and rotatioinal ,ymmctr, 10 th," iaIflic frekjul
ments, and that we shall necer hae to use netorks like that if L ig. 12 In t1eto l cl

I I. Conclusions

We have assumed that the traffic level and the necessar% perlormance tc specilied. ind ti
the goal is to fulfill these requirements with the least cost. The qualit\ ofi a g tien razametion i,
defined to be the inverse of the cost of a given organization, suitably normali/ed lur-stinCS is delined
and serves as a natural dimensionless number to characterize the requirements We also assume that
space is homogeneous and isotropic: terminal density and trallic requirement, are the samc e,,er , , here
This often leads to results that depend only on the average distance travelled b\ messages. and not om

the distribution of distances travelled. The validity of' our results in the case of irregularity either In
spatial distribution or in traffic requirements was not investigated. The cost of' communication
resources was modelled by simple power laws.

When the traffic is stead., the quality of simple one-level dedicated-channel systems is reason-
ably good, since all channels will be well utilized. When the traffic is burst\, channels are hardly util-
ized, and a significant gain can be achieved by sharing, even if the technology has no inhetent
economies of scAe.

!o make sharing of dedicated channels possible, we introduce rtul/at hierarchical structurc,
(For a treatment of hierarchical organi/ation mixing Al(01U.\ and dedicated channel sec 1191 ) Our reg
ular structures are obtained by dividing the terminal piopulation into equal groups. and placing a concetn
trator in the center of each. Regular multi-level hierarchical structures can improv the pcrlorman ol
bursty systems significantly. I he optimal structure is characterized by a balance principle, that gives the
ratio of investment in any two consecutive levels Another characteristic of the optimal rcgula:
hierarchical structures is that channels are organized in small groups of equal sizes

In line systems the improvement is obtained by shortening individual lines and from sharing
long high-capacity lines. The performance of regular line structures is therefore strongly dependent on
the dimensionality of the system. It is harder to improve two and three-dimensional line systems by
our regular structures since the typical line length decreases more slowly With the number of groups
when the terminals are distributed in more dimensions The question of the performance of the best
possible line structure is raised but left open. We conjecture that the dependence of the cost of regular
structures on dimensionality will not be significantly improved by any scheme.

The improvement of broadcast systems follows from spatial reuse: i.e., different groups of ter-
minals can communicate with their concentvators hv short range transmissions at the same time.
thereby sharing bandwidth I he performance of regular broadcast systems is independent of dimen-
sionality. and very similar (o tha (it Ihe one-dioncnsio nal line systems. I"or systenls in IW(i or Mole
dimensions which are very distributed and bursiv, dedicated broadcast channels are therefore better
than line channels.
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The problem of very bursty distributed networks with dedicated channels reduces almost
entirely to the centralized system problem, since the 'network' part at the top level is only one of very
many levels. Tessalating the plane with hexagonal tiles leads to the best network with both technolo-
gies, but for different reasons. Of all regular shapes tessalating the plane, the hexagon has the smallest
average distance to its 'center', and this makes it superior for line networks. Tessalating with hexagons
is good for broadcast networks using omnidirectional antennas because it results in the least interaction
between neighboring tiles, and makes the most sharing possible 13).

The best geometry for a network with a given number of levels changes with burstiness, but it
seems that, for line networks, when the best number of levels is used, as a function of burstiness, tes-
salating the plane with hexagonal tiles (and forming a triangular network of communication lines) is
usually the best.

Appendix

To simplify our formulas here let us rewrite (IS) and (16) as
tP F,, (A1)

- I (A2)

where

V X
g +ai/n

s /x

I - Xkh
a lt R

Using flP,, i and £B,=b we can solve (Al) and (A2) for P, and 8, in terms of B,r.t,s.x and m.

When a m we get

P , V (A3)

B, x l-x B (A4)

Ignoring geometric constants, we also know that the following must be true
I

8 L aStPiR b+1 (AS)

Using (A3) and (A4) in (AS) we can get B as a function of ,r and the constants t,s and x. Isolating
the dependence on r we get that B is proportional to

W- I b+1 (A6)

Differentiating we find that B is minimized, as a function of r, when
m I- 5 = x rib+ WR/  (A7D

Substituting (A) in (A) we get that 8 is proportional to (x-l) and is therefore proportional to
m( - s 'r'(b+ -. I . Since the cost is proportional to B b+1 it follows that when the best r is used the sys-
tem cost is proportional to
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Substituting (A) in (A3) we also see that when the best r is used the P, do not depend on 1, and thc
must therefore satisfy P,=rn' r. While the best number of iecls will depend on g. i.e.. on the qualit
of the design procedure applied to each level. (A8) shows that the ,,stenl cost. when the best number
of levels is used, is independent of g. For larger m we can also approximate (A) by I a and see
that the growth with In of the best Iegular hierarchical s.stem depends onl, on the geometric dimen-
sionality and on the length dependence of line cost, and hard\ depends on the capacit dependence of
line cost.

When a=n (A3)-(A7i are not valid since .- S 1=1= . But the solution I, actuall simpler. In
this case we get from (Al) that for everv r. the best r-leel system should hae Pj= P_ P,=tn
and from (A2) we get that 81=B,= =,=Br. Substituting in (A5) and ignoring the geometric
constants we get

B/r__({L,"S~m " ,,,,

Isolating the r-dependence of B. it is cas to see that the best r must satisfy (h - I) r v t Oni and that
the system cost when the best number of leels is used is proportional to I/o)ol"
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and the dela i', then gi'.en b.

T (9)
(C - ) (-S

(omparing (9) with (71 \kc see that we gain a factor (I at least 2 by going From a two-level channel-
splitting scheme to a two-le\cl channel-sharing scheme Comparing (9) to the delay in the one-level

scheme. gi\cn b, I - .--- w: we see that the t\&o-lc\,cl channel-sharing scheme is better that the one-

le\el c hemc is lonLe I, P, i-, smaller than m.

6. Mixing ,ilh a General Random-Access Scheme

The channel-splitting cur e in Fig. 5 shows the power of the two-level mixed-mode idea even
in its simplest form b, introducing intermediate repeaters and choosing their number we gain a
,ignificant impro,cment m',er both the one-level ALOHA and the one-level F)MA. By choosing the
number of repeaters, we can make sure that the dedicated channels are not underutilized and that we
do not ha\,e ALOHA systems that are too heavily loaded.

Retracing our steps so far, we can see two ideas that improve the mixed-mode organization
e en more If top-lc\el transmission can be perfectly captured in the presence of bottom-level transmis-
sion then both levels should share the channel. and we get the 'full interference' case. If the interac-
tion between levels is minimal then the performance i, even better, and the 'no interference' model is
then appropriate.

:ig 0 repeats, some of the curxes of previous sections and also includes the tw., !evel ALOHA

scheme of [41. We see that two-level ALOIIA offers little improvement over the two-level mixed-
mode scheme, even though the two-level ALOIIA was modelled with the best possible assumptions
regarding the interaction between levels. It can be shiiwn that the three-level ALOHA offers even less
improement [41 We thus reach the conclusion that if you were to design a system for a given ST
where neither one-le,el ALOHA nor FDMA perform well, you should almost always use a two-level
mnxed-mode system, and only rarely (i.e., for a small range of STaround I ) should you use two-level
.,0IIA. Intuitively, a message should (almost) never have to face contention systems twice on its way

to its destination: if contending once is not enough to reach the destination, the rest of the way should
consists of dedicated paths.

The dedicated-channel scheme can be improved by a multi-level organization that uses dedi-
k.ted channels at all levels 131. Even with the best number oi" levels, the cost of a multi-level
dedicated-channel scheme grows with the number of terminals. [he mixed-mode scheme presented
here already assumes the population of terminals is 'infinite', and its cost is independent of the number
(,f terminals. A hierarchical organization mixing modes is therefore better, when the number of termi-
nals is large. than a hierarchical organization using dedicated channels only.

Will the analysis presented so far be useful if we have the option of using Carrier Sense Multi-
ple Access (CSMA) or any other random access that is better than ALOIIA'.'

We shall describe a general random access scheme by

C - S/U

where 1, is its maximum utilization. If t is greater than l/'e the random access scheme will be better
than ALiA, and the region (in the Qualit' versus ST plane) left infeasible will become smaller. But
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organization and made unavailable to the bottom level was left idle. In the channel-sharing s.,stem
ever, thing that is not actually used b. the top level is available to the bottom leel [he new% bottom
le vel has therefore more capacity, and the delay in it Aill be smaller. We thus ha,,c that the total deli\
in the channel-sharing system is smaller than the delay in the channel-splitting system.

Are the assumptions used in proving theorem I reasonable? The lirst is simply the assumption
of" 'transparent bottom', introduced and justified earlier. When the two le\,els are synchroniled. the
total capacity available to the bottom level will he reduced exactly by the amount of activity in the top
level. But the assumption that the delay will simply depend on this reduced capacity ignores the detail,
of the occurrences follow ing a transmission failure (for example, the retransmission polic\ and it,
influence on delay). Fhe second assumption is thus more a device to approximate and simplify the
behavior of real systems than a direct description of them. It is a natural extension of another dcevicc
we have used consistently. the assumption that the total offered traffic in an AL.OIIA system is a Pois-
son process.

The simple model of the influence of the top level on the bottom level, which is assumed In
theorem I, has been used systematically in earlier sections of this paper. As a different example of the
benefit of sharing, let us see the improvement possible when dedicated broadcast channels are used

Assume we have m terminals and form a twro-level system by splitting them into PI group.s with
P, terminals each. If dedicated channels are used at bith levels and there is no interference hetween

lower-level groups we have
P, P)

( I (2, -_ S/P

If the total communication capacitl. %\e ha,e is ( the task of designing the best s stem can he formu-
lated thus Minimize Twhen S is gi en b choosing P, and P2 subject to PIP)= i. and b, choosing (,
and ('2 subject to (; -( I ( I he constrained minimum is achie\ed , ,hen
C_'= ((- ) / 2, ( -. ;2 and

P I 2 S

and the resulting minimum T for a two-level dedicated channel scheme is ei\,en by

T 4 + (7)
((-S)2 ('- S

What will be the system performance if' the channel is shared between levels? To analyze this case w e
shall assume that the bottom level is transparent and can detect its failures immediately The lower
level uses the empty slots left by the upper lev el in a round-robin fashion. The total delay for a system
of P, groups of P2 terminals each will modelled b%

T = -' -' ( 8)
c- ; (c -S) S/P,

The first term is the delay in the top level, consisting of P, dedicated subehannels. The second term is
the delay in each one of the bottom-level subsystems, each of which is carrying a traffic of S/P liver
P, dedicated subchannels ( S is the capacit\, available to e' er. inc of the bottiim-le\el s.\stens

1he Iof (8) will be minimal when
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It' a transmission from at terminal can be heard by more than one repeater, the s~ 'stemn perflor-
mance mnay be improv ed by allowing any of' the repeaters. which received this transmission correctly, to
relay it to the station HO ). In that case the message will not have to be correctly received specifical
by fts repeater. and success in reaching anN of' the repeaters will be enough. This advantage shoUl he
traded against the possibilit% that a message wIll successfuLlly reach more than oine repeater, and tat all
these repeatteis will send it on. We shall not anal'. e this idea in any more detail.

5. Sharing or Splitting?

In the previous sections we ha'.e introduced se'. ral models for a two-level svsten i w \hIch
both levels share the communication channel Buit is this sharing good! In order t(; ans%%er this queCs-
tion, consider another alternati'.e:

If we hav.e at communication medium with capacity C. let us assign at portion 13( to the
terminal-repeater traffic and at portion (1/)Cto the repeater-station tratlic. Using R repeaters, and
assumning no interaction among ALOHIA subsystems, we get the following equation for T

T R +
13C'--S Cl-f3eC51SR

We can now minirni/e T by choosing both R and f3. The minimum Twill be obtained \%hen the
following two equations are satisfied:

],S

13c'- - v

T hese equations can be solved numerically. and F ig. S gives the quaility of this optimal twko-Icc'el
channel-splitting organizatio~n compared with Al .011A. Hl)MA with 1024 terniinaks Also included are
the channel sharing scheme, in the cases of no interference and lull interf'crene. We see that shai ing
the channel is, signilicanth% better than splitting it

Sharing is superior to splitting in very general circumstances, as the following theorem shows:

Theoremn V Consider a two-level terminal-station communication system, using at broadcast channel.1
This channel can either be split between levels or shared by both. Assume the channel-sharing mode
has the following two properties:

I) Top-level communication is not bothered at all by bottomn-level communication. i.e.. the bot-
tom level is transparent

(2) The only effect activity in the topl Iecel has on the bottom Ic' el is to subtract itself' from the
capacity available to the bottom level

Then the channel sharing moide is superior to the channel splitting mod e

Prool. Let us start with a channel-splitting system carr~ ing at giv.en traffic aind modify it toI get at
channel-sharing system that will carry the same traffic with at smaller dela'. When the new topl level is
active it uses all the available hand-Nidth Its i r-insmissiion tliime will t hereb ore he shorter than the
transmission time in the channel -splitting sl sitm lH appriopriate staling and adjust ment of the
transmission policy in the tot) level we can ensure it will have an equal or shorter waiting time, and that
it will utilize the same fraction of the total communicatien resource as did the old top level. The delay
in the new top level will therefore be smaller than the delay in the old topl level. Since the old top level
must have been less than fully utilized, somec of the capacity assigned to it in the chainnel-splitting
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Let us stress once again thai we do not explicitl treat the question (f' transmissimn errors.
Instead of discussing the probability of successful reception and its dependence on various parametcr,
we use the lollowing simple model: A transmission is always received correctly if its source is "ithin
range of' the destination and if there is no interference at the destination. Interference is caused h% am
other transmission within range of the destination. The range dependence of a successful reception i,,
modelled as a step-function. When there is no interference, a transmission will always be succeslul If
the distance to the destination is less than the range, and will never be successl'ul if the distanc i,

more than the range.

Let A I be the area covered by the any group of terminals, intended to be heard b. onc
repeater. Let ,42 be the area covered by those terminals which are actually heard bx the repeater In
any safe design we must have .4 > 1. Let r he the ratio .4 J)A 1. r will obviously depend on the shape
of the cells around the repeater and on the terminal's po(wer. What is the effect of the number (it
repeaters on r'? A simple geometric argument leads to the following conclusion: If we change the
number of repeaters and the siLe of their cells, hold fixed the shape of the cells and adjust the
terminal's power to get the same power at the repeater in the worst case (which is when the terminal i.,
as far as it can be from the nearest repeater) then r will stay the same.

For example, lake the case (of' a plane divided into identical regular hexagons. Let us give ever\
terminal exactly the power necessary. on the average, to reach the center of a hexagon I'rom its, ci
tices, without any margin of safety. In this case r will he the ratio between the area of a circle and the
area of an inscribed regular hexagon, i.e., r=1.209 . If we wish to guarantee that each terminal can
reach more than one repeater the transmission range must be equal to the (worst case) inter-repeater
distance. In this case r will be equal to 3.627 .

[or a given shape of cell and power adjustment policy, we have therefore a set of interacting
ALOIIA sstems, where the amount of interaction does not depend on the number of repeaters. A
simple argument, like that used to ind the maximum utiliiation of slotted ALOI IA system 191, lead,, t(i
the following: rhe maximum utilization of each ALOIIA system consisting of a repeater and its termli-
nals will be degraded b. the interference of' its neighbors, and is equal to I/rc.

Modil\ ing (4) we get f'or our present two-ievel system

. -A - + .. __ ..I (6)
C S (C S) erS/R

The optimal R is now gi\.cn hy

and Twith this optimal R is

T- r. ,."(c s) + I
shos te qali"' if he fu"

Fig. 4 shows the quality of the full interference' ase when interaction among different A.I(IIA sv
tems exists. r. the coefficient of interaction, takes there the ,alues 1.2,4 and 8.

In general, with more interaction, we shall be able to achieve a lesser portion of the inl'casible
region, and more repeaters will be needed. But having neglected the cost of' repeaters. we should cer-
tainlv not allow their number to grow without limit. Another problem with large R is that we have
assumed that the termin,il population is infiite But when R becoime-, comparable to our actual

number oi' erninals, the one level II )M A will, ()I course, he he r than this lc-.cl organi/ation
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Even if the geometry alone is not enough to justify the assumption of transparent bottom, there
are other good reasons to consider it valid. Since we expect to have few repeaters, they may be expen-
sive and sophisticated. We shall assume now that repeaters are powerful and sophisticated enough to
be perfectly captured by the station in the presence of bottom-level transmissions. The top level will
never 'see' the bottom level, and this is the reason for the name 'transparent bottom'.

The assumption of perfect capture answers some of the problems raised at the beginning of the
section. To model the effect of the other problems, we shall modify the 'no interference' assumption
and assume that a repeater cannot listen to its terminal whenever any of the repeaters is transmitting to
the station. Calling this new assumption 'full interference' [81, we shall use it as a worst case estimate
for the interference between repeaters and terminals. With the full interference assumption, the
effective capacity available to each terminal group is C-S, and instead of (I) we have for T the follow-
ing expression:

C-S (('-S) -eS/R

The optimal R is given by

eS + \'eSW -"S)R~ptimt = ("- S t"

and T with this optimal R is given by

T -[i(%_S) + 11

Fig. 3 shows the quality of the two-level hierarchy under the 'full interference' assumption \

significant part of the 'infeasible' region is still filled, but many more re, ,-aters are necessary in order to
achieve this. From (5) we see that as S-C. R--. The quality in Fig. 3 is given for optimal R, and
for R fixed at 2, 4, 6, 8. 16 and 32. For comparison Fig. 3 also includes ALIOHA, FDMA with 1024
terminals, and the two-level 'no interference' case of the previous section with optimal R In both
curves with optimal R only the portion with R > I is drawn -They start at the same noint because whcn
R- I the 'no interference' and the 'full interference' assumptions arc identical

4. Interacting ALOHA Subsystems

Spatial reuse is another strong assumption made in section 2. each rcl ' cr will be head by 'its'
receiver and by no other receiver. Is this a reasonable requirement'? We to liu, ;r,. astalling a few
sophisticated repeaters but the many terminals should be cheap and simple ThCs terminals ma. be
mobile or unattended and they will not necessarily know where they are or where their repeater nia be
Even if each terminal had a directional antenna or an adjustable output power, it might not hae the
information necessary to control them. Let us assume that all terminals ha\,e the same power and an
omnidirectional antenna.

Consider a division of the plane into a set of' equal polygons In the 'middle' of each we place i
repeater. Assume the terminals are uniformly placed over the plane We wish to guarantee that a tr
minal will be heard by its nearest repeater. If the only factor that determines reception is power i the
receiver, we must give each terminal enough power for the worst case (h-hen its distance to the nearest
repeater is maximal). We shall assume that whenever two terminals ha~e enough power to be heard b\
the same repeater, the resulting interference will destroy both messages. that is. there is no capture of

the terminals' transmissions Because every terminal is gifen enough p(owcr for the ,ori case range.
ome terminals will be heard by more than one repeater. the assumption ofi no interaction beioeen

terminal groups must, therefore, be modified.
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use for delay in ALOltA systems

When both levels are thus slotted and synchronited, the eflective capacity available to each ter-
minal group will be equal to C-SIR, since SIR of the available capacity is used by its upper level
repeater. The load on each lower level ALOitA system accessing a given repeater will bc SIR The
average time T a message will spend in the system is therefore

R __ __
T R + -- 1(I )

C- S ((-S/R)- cSiR

where the first term is the time spent in the top level (repeater-station) and the second is the time
spent in the bottom level (terminal-repeater).

With () giving the total time in system, we can now ask what is the optiml number of'

repeaters. Minimizing Twc get

R,,,min= 'j (I+eS + vll+e)S((-S)) (2)

With this optimal R we get for T

Tmrnimai = f (3) +~ 4~7

From (2) we can see that \hen S is ve.y small, the optimal R is almost zero. This occurs because the
two-level structure is worse than the one-level ALOIIA when S-0. The optimized R will try to com-
pensate for this by driving to zero the time spent in the top level. We can also get from (2) that the
largest optimal R is 3.95, obtained when S/C=.944. In practice, R must be an integer g.'cater than one.

Equation (3) gives T as a function of S and C, The quality can be calculated b\ comparing C
with the capacity necessary in an M/M/I scheme for the same Sand T That is. Q = (S+liT)/(. I:ig.
2 gives the quality of the two-level structure with the optimal R (which is not necessarily an integer)
The section of the curve in which the optimal R is smaller than I is not drawn. Also plotted is the
quality of the two-level structure, when Tis given by M) and when R is fixed at 2. 3. and 4 I-or com-
parison, the figure also gives the quality of ALOtHA and the quality of [DMA with m= 1024 terminals

We see that a two-level system can fill in a large portion of the 'chasm' left betwAeen .\.OHA
and FDMA. This chasm is an 'infeasible' region when only ALOHA and [I)MA are considered Wkhcn
the number of terminals grows, FI)MA will move even further to the right, but \A)lA and our two)-

level scheme will not be modified (both of these already assume an infinite population of Icrminls' s()
the relative gain achieved by the two-level hierarchy over both AI.)iA and I:)M,\ will bc c'cn
greater.

This seems almost too good to be true' In the following sections we shall reexaminc our
assumptions and see how relaxing them will modify and degrade the r'sult.

3. The 'Full Interference' Case

Some strong assumptions were made in the last section to the effect that both terminals and
repeaters can use the same broadcast channel, with minimal interference. Consider first the assump-
tions of 'transparent bottom' and 'no interference'. These assumptions are reasonable if all the termi-
nals are far from the station, for example if they are spread around a ring with the station in the mid-
dle. But if there are terminals close to the station, more interference may occur. Transmissions from a
terminal situated near the station to its repeater may interfere with repeater-station communication, and
transmissions from one repeater to the station may interfere with transmissions from terminals to
another repeater.
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D STATION

R REPEATERS USING
DEDICATED CHANNELS
TO COMMUNICATE
WITH STATION

0 0 0 00 0 0 0 0

AN 'INFINITE' POPULATION OF TERMINALS, DIVIDED INTO R GROUPS.
EACH GROUP USES ALOHA TO COMMUNICATE WITH ITS REPEATER.

Figure 1. Two-Level Mixed-Mode Broadcast Systems.

(2) spatiul reuse: The terminal-repeater communication will be done using the ALOHA scheme.
Each of the R groups can use the entire bandwidth to communicate with 'its' repeater and there
will be no interference between transmissions of the terminals in different groups. That is, the
terminals in each group will be heard by exactly one and the same repeater.

(3) transparent ho/tom: Bottom-level transmissions have no influence on top-level transmissions.
Each repeater will use a dedicated subchannel whose capacity is equal to 1/R of the total avail-
able capacity for its communication with the station.

(4) A repeater cannot listen to its terminals while it is transmitting to the station.

(5) no interference: A repeater's capacity to listen to its terminals ill not be bothered by any of the
other repeaters transmitting to the station (81.

The throughput-delay performance of the ALOHA schemes is not described by a simple ana-
lytic expression [21. For simplicity we model the delay T in an 'inlinite population ALOIIA system

carrying a traffic S on a channel whose bandwidth is C by T . This is a simple two-parameter

approximation, that reproduces the known behavior of (unslotted' ALOHA when S=0, and the kno,
behavior of (slotted) ALOHA when S/('= I/c. lor a similar three-parameter approximation see [51.

In our two-level scheme, if a terminal is trying to transmit to its repeater wh , I reneater is
transmitting to the station, the terminal will not he successful, and will have to try ag., ";Mize
the wasteful effect of these bottom-lecl failures the two lI,,Is should be slotted ar *d.
This means that dedicating subehannels in the top le%,el must be done by lime D. ,itnle
Access (TI)MA). l)espite the fact that Fl)M,\ must he used, we shall describe the delh ,p
level by the FDMA formula, which is both simpler and mo-c simlir to the M/M/l type lk,-.,,ia we
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favorable conditions. In sections 3 and 4 we relax the assumptions on the interaction between levels
and on the interaction between lower-level ALOHA groups respectively. Section 5 shows that sharing
the channel by both levels is often better than splitting it. Mixing dedicated channels and any random
access scheme is discussed in section 6, and section 7 shows that having more than two levels leads to
only a small improvement.

In the second half we discuss systems in which distributed terminals are both the sources and
destinations of all messages. We shall call such systems networks, and assume that the average distance
travelled by messages is much larger than the distance between a terminal and its nearest neighbors.
Section 8 introduces two-level mixed-mode networks with the simplest possible routing. Section 9
shows that improving the random access level leads to a relatively small overall improvement, and sec-
tion 10 similarly shows that introducing more than one dedicated level leads to a small improvement.

Throughout the paper we assume that the communication resource available is a broadcast
channel of capacity C. We shall also assume that the message arrival process is Poisson with a total rate
S, that message lengths have an exponential distribution- and that all terminals contribute equally to the
overall traffic. This last assumption characterizes the case which is hardest to control efficiently. We
choose the data unit so that the average length of a message is equal to I. This is simply a convenient
normalization, which is equivalent to measuring communication capacity in messages (of an average
length) per second, instead of measuring in bits per second.

If the terminals were co-located in the same place, the best access scheme would be to form a
queue of busy terminals (i.e., those having anything to transmit) and to let them use the full bandwidth
available one after the other. Forming one queue is much better than giving each terminal a fraction of
the bandwidth, and letting each terminal queue its own messages [6]. When terminals are distributed
and cannot form one queue without some investment in coordination and control more bandwidth will
be necessary. Assuming that Sand Tare given, we define the qualiy [71 of an arbitrary access scheme
as the inverse ratio between the capacity necessary when using this scheme and the capacity necessary
when using the best possible scheme, in which messages form one queue and share one channel. When
messages arrive independently and their lengths are exponentially distributed, this best scheme is the
M/M/l queue, in which we have CMMI =S + I/T

2. The 'No Interference' Case

Given our broadcast channel, let us build a two-level hierarchical system by dividing the large
number of terminals into R equal groups, and by giving each group a repeater. Each message will go
from its terminal to its repeater, and from the repeater to the station. The terminal-repeater (bottom)
level will have a large terminal population, possibly bursty, while the number of repeaters will, hope-
fully, be small, with enough traffic going through each for the repeater-station (top) level to be steady.
It is natural, therefore, to suggest using ALOHA for the terminal-repeater level, and using dedicated
channels for the repeater-station level.

Using ALOHA for the bottom level is desirable for other reasons too. For example, because
no explicit control is exercised over transmission, ALOHA is especially ,ood for mobile terminals and
for situations where the number of potentially active terminals is much greater than the actual number
active at any moment.

In order to model this two-level mixed mode centralized system, shown in Fig. I, we shall start
with the following assumptions (the words in italics will serve as names for the assumptions):

(I) channel sharing. The communication medium is a broadcast channel, and both levels (terminal-
repeater and repeater-station) may use the full bandwidth.
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On the Advantage of Mixing ALOHA and Dedicated Channels

Abstract

When many terminals which are distributed in space must share communication resources, we
face the following problem: What scheme can control the access to the communication resources
in an effective way? We shall assume that S. the traffic to be carried, and T. the acceptable
average delay, are specified, and that the goal is to design the least cost system satisfying these
specifications.

Dedicating a fraction of the resources to some source-destination pairs is one very simple access
scheme. Another simple scheme is ALOHA . When we combine the specified traffic and delay
into the dimensionless quantity ST, whose inverse we call burstiness, we find the following: Dedi-
cating separate channels is good when the traffic is steady, but bad when the traffic is bursty.
ALOHA is good when the traffic is bursty, but bad when the traffic is steady. Neither ALOHA
nor dedicated channels are good when the traffic is of medium burstiness.

Mixed-mode systems, using ALOHA in a bottom level and dedicated channels in a top level, can
be good, since they can trade the amount of interference in the random access level against the
number of dedicated channels in the top level. By choosing the right mix, such networks can
become insensitive to the limitations of both access schemes.

I. Introduction

When many terminals which are distributed in space must share communication resources, we
face the following probiem: What scheme can control the access to the communication resources in an
effective way? We shall assume that S, the traffic to be carried, and T, the acceptable average delay,
are specified, and that the goal is to design the least cost system satisfying these specifications. Further-
more, we shall assume that only the capacity, i.e., bandwidth, necessary has a cost, and that equipment
and transmission power are free.

Dedicating a portion of the resource to source-destination pairs is one very simple access
scheme. Another simple scheme is ALOHA [1,21. When we combine the specified traffic and delay
into the dimensionless quantity ST, we find the following: The dedicated-channel scheme is good when
ST>> I (the traffic is then said to be steady) but bad when ST<< I (the traffic is then said to be
bursty). ALOHA is good when the traffic is bursty, but bad when the traffic is steady. Neither ALOHA
nor dedicated channels are good when the traffic is of medium burstiness.

It is possible to improve the dedicated channel scheme when the traffic is bursty by a hierarchi-
cal structure that makes sharing of few high capacity channels possible 131. It is also possible to
improve the ALOHA scheme when the traffic is steady by trading off transmission range and the neces-
sary number of hops 141. Is it possible to obtain a good access scheme for medium burstiness by mix-
ing the dedicated-channels and the ALOHA schemes? Kleinrock 15] has shown that splitting the
resources and the traffic between two access schemes can never lead to an improvement. Here we show
that by building a hierarchical system with different schemes used at different levels we can get a
significant improvement at medium burstiness. The first half of this paper applies this idea to systems
in which the sources of messages are many terminals distributed in space, but in which all messages are
destined to one common station, We shall call such systems centralized, and assume that m, the number
of terminals, is very large. In section 2 we introduce the mixed-mode scheme under the most
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there still will be a region that is infeasible if we consider only FDMA and the given random access
scheme, and the two-level mixed-mode scheme can help fill this infeasible region.

Let us divide the gap between .367 (the maximum utilization of ALOHA) and I (the max-
imum utilization of' M/M/ I) into four equal parts, and consider general random access schemes where
L (the maximum utilization) is equal to .526, .684 and .842. Figures 7, 8 and 9 show the quality of the
one-level and the two-level schemes, with this set of values for U. ['he mixed-mode curves were
obtained from the formulas of this chapter by substituting I/U for e . The two-level random access
curve was obtained as follows:

4" Let us assume that the total offered traffic G and the throughput S are related, in a general ran-
donm access scheme with in terminals, by

S G al- (10)
S C MC (0

The maximum utilization (i.e., the maximum S/C) of this system will be obtained when aG/C=I, and
is equal to

Equation (1) has its maximal value when m-2, and the best two-level system will therefore, once
again, have two repeaters. Since we have denoted the maximum utilization of an 'infinite population'
svstem by U we must have a = I/Ue . In analogy to (4.4) we can, therefore. model the delay in a
two-level mixed-mode system by

I 1
T +

C- 2aS (C-G/2) - S12U
The first term is the delay in the repeater-station level, which has a maximum utilization of 1/2a, as
obtained from (11). The second term is the delay in each one of the terminal-repeater subsystems,
where G is given in terms of S and C by (10) with rn=2 . ( This very simple model for a two-level
random-access system should not be applied when U>2/e-.736 . because the calculated maximum
utilization of a two-terminal system will then be greater than one!)

From Figures 7 , 8 and 9 we see that the conclusion formulated earlier for ALOHA systems
actually applies to random access systems in general: two-level mixed-mode systems fill a significant
part of the infeasible region. While our model for a system with two levels of random access may be
considered too crude, it seems to say that two levels of random access do not offer a significant
improvement, and are almost dominated by the two-level mixed-mode systems.

7. Are Three Levels Ever Necessary?

If two-level mixed-mode systems are good, would three-level systems be better'? Consider, for
example, a system consisting of one ALOHA level as the bottom level, and two dedicated levels on
tops.

lDespite the fact that every message takes two hops in the dedicated levels we shall assume that
on one hop. the longer one. influences other repeaters, and for this influence adopt the 'full interfer-
ence' assumption. If the two dedicated levels do not share bandwidth, but the bottom level shares with
both of them, we can write for the delay in this three-level system
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4S 4-R 1+Tt (12)(C -S) 2  (C ) C-S -erS/R

fhc lirst two terms are the delay in the dedicated levels when we have R repeaters. obtained Irorm (7).
[he third term is the delay in the Al-011A level, and r is the interaction ratio.

If we assume that the dedicated levels share the channel we can use for them (9), and the delay
in this three-level organization is

T S _ 2 F + I (13)

I- S)2 C - S (-S)-erS/R
I-or a given C and S we can. in both (12) and (13). search for R, the number of repeaters. that will
minimize T.

Fig. 10 shows the quality of the two-level and the three-level mixed-mode schemes. when there
is no interaction between ALOHA subgroups (i.e., r=l) and the optimal number of repeaters was
chosen in each as a function of burstiness. The three-level scheme was drawn only when it is better
than the two-level scheme. Having three levels results in no noticeable improvement if the two dedi-
cated levels split the channel and results in a small improvement if the two dedicated levels share the
channel. The reason for this small improvement is clear: going from one dedicated level to two dedi-
cated levels leads to a significant improvement only when the traffic is bursty and the number of
repeaters is large. But in our two-level mixed-mode scheme the number of repeaters is large only when
the tralic is steady, so adding a second dedicated level cannot lead to any dramatic improvement.

When we have interaction between the ALOHA groups, the number of repeaters becomes large
earlier, i e.. when the traffic is bursty enough to make two dedicated levels better than one. Figures 11,
12 and 13 show the quality of the three-level mixed-mode scheme when the interaction ratio r is equal
to 2. 4 and 8. rhe three-level scheme in which the channel is split between the two dedicated levels

a as actually plotted in all three figures , but becomes notice',ble only when r >4.

We see that introducing three levels improves the two-level perforamance significantly only
when the interaction between ALOHA groups is very large. Even then, the gain achieved in going
from two to three levels is much less than the gain achieved in going from one to two levels. When
the interaction between ALOHA groups is strong, it may be unreasonable to ignore the interaction
between repeater groups in the middle level. However, such an interaction- free division into groups
was assumed in deriving (7) and (9). which form the basis for (12) and (13). Hence our three-level
results are likely to be too optimistic. In reality, a three-level mixed-mode scheme will achieve an even
smaller improvement over the corresponding two-level mixed-mode scheme than our figures show.

8. Two-Level Mixed-Mode Networks

In networks, i.e., when both sources acid destinations are distributed, we have a situation simi-
lar to the one we saw earlier for centralized systems: it is easy to organize and to control (if any control
is necessary) communication systems that are either very steady or very bt . even if they are distri-
buted. It is the distributed systems of medium burstiness that pose a prob, in. We saw earlier that a
hierarchical two-level centralized system which mixes dedicated channels and ALOHA in the appropri-
ate 'amounts' can be much better than either of them, for medium burstiness. Therefore, let us now
apply the mixed-mode idea to networks. We shall discuss in detail only one-dimensional networks, but
expect our major conclusions to be valid for two-dimensional netw irks too. Denote by N the average
distance travelled by messages, and by S,, the rate of' traflic originating in a unit length of the network.
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Let us create a mixed-mode network to serve a one-dimensional system by the following pro-
cedure. Place stations at fixed intervals equal to L. Let every message go from its originating terminal
to the nearest station, then over the 'station-network' to the station nearest its destination, and finall'
from that station to the destination itself. The connections between stations will be specified later.
Dedicated broadcast channels will be used for station-station communication, and ALOHlA will be used
for terminal-station communication. When analyzing the mixed-mode network we shall assume that
the number of terminals per station is very large, this being the worst case for random access. But
when comparing with dedicated-channel networks we shall assume a set of equally spaced terminals. A/
occupying an) section of the network with length N,

What distance is travelled by messages on the station-station level'? Consider a message that
has to travel a distance X from source terminal to destination terminal. The distance it will travel on
the station-station (top) level depends on the location of its source terminal within the station area, but
when averaging over all possible starting locations we get:

Lemma: The average station-station distance travelled by messages whose terminal-terminal distance is
X, and whose starting point is uniformly distributed, is also equal to X.

Proof" X can be written as X - nL+Y, where n is a positive integer, L is the inter-station distance, and
0)< Y<L. Let us parameterize all possible starting positions within a given station by f, where
-L/2 < t < L/2 . The distance travelled by a message on the station-station level is kL, where A is
the integer nearest to (X+0/L. It follows that

n if f-L/2< f< Y-L/2
k -_ n+ it' L Y<<L/2

The average distance travelled on the station-station level is therefore

n(L-Y)+ (n +lI> Y= nL+Y = X

It follows that the average station-station distance travelled by all messages is equal to N, the average
distance between source terminal and destination terminal. This lemma does not hold for two-
dimensional networks, but whenever N>>L we have that N is a good approximation to the average
station-station distance travelled.

Let us assume that messages originating at one station will be heard at its nearest neighbors
only, (one on each side.) What is the bandwidth necessary for such a one-level dedicated-channel net-
work'? What is a good policy for creating and allocating dedicated channels? Once we define our chan-
nels, by defining traffic streams that can be transmitted independently, the overall bandwidth necessary
will depend on the capacity each channel needs and on the number of colors necessary to paint the
channel so that no two of the same color interfere at their destinations.

We shall assume that every station has an omnidirectional antenna, i.e., that every transmission
propagates in both directions. Two transmission policies are then possible: If all transn ons coming
out of a given terminal are queued together and transmitted without regard to the dii :tion of' their
destination, we need at least three colors to ensure that a terminal does not interfere with transmissions
destined to itself or to its two neighbors. Three are obviously enough, because they can be assigned to
terminals in a cyclic fashion. If we want transmission from a given terminal to each of' its two neigh-
bors to be done independently and at the same time, we must give each terminal two channels. Four
colors are then necessary and sufficient to enable each terminal to separately send in two d- ctions and
to separately receive from two directions.
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l.e / be the average delay sulleied in the ip (station-stati() level bN all nessages, and let
he the ratio between L and N. I/z is the average number of hops taken by a message in the top level.
If all traffic coming out of a terminal share one channel, even though each message is destined only to
one of the neighbors, the traffic on each channel is NS,, and since three colors are necessary. we get
for this case that the necessary capacity for the station-station level is

CI = 3 NS, + .3 (14)

it we give each terminal a separate channel for each direction, then the traffic on each channel is
\S,,2. and since four colors are necessary in this case we get

I 4
1 = 2 NS, +  1 4 (15)

Comparing (14) and (15). we see that it is better to have one channel per terminal when the traffic is
bursty (NST<< l/:) and it is better to have two channels per terminal when the traffic is steady
(NS,,T>> 1/:). Equations (14) and (15) will also describe one-level dedicated-channels networks if M
is substituted for I/:. where A is the number of terminals in a portion of the network whose length is

Returning no% to our two-level networks, we must calculate the bandwidth necessary for the
bottom part. Let us first assume that all transmissions in the bottom level have a range exactly equal to
L12. The total tratlic carried by each terminal-station system is then 2LS, = 2zNS, . Despite the fact
that half of this total traffic is coming from one source - the station - we shall, at first, model the bot-
tom level by a simple ALOIIA system. With our assumption on transmission range there will be no
interaction between neighboring ALOHA systems, and we can write for ('2, the capacity necessary in
the bottom level.

C", = e2zNS,, +4-- (16)

where T2 is the average delay for getting through a terminal-station system once.

Let us assume that separate capacities will be assigned to the terminal-station and to the
station-station subsystems, without sharing. The necessary total capacity can then be obtained by
minimizing (' 1+C 2 subject to T1+2T 2 = T. where 2 multiplies T 2 because every message goes through
two terminal-station systems, once at each end of its path.

Combining (14) and (16), for example, we get

C'= 3NS,,+,2:NS,, + I1(3/: + 2) 1 (17)

Combining (15) and (16) will similarly lead to

C'= 2NS,,+e2zNS,,+ {((4/z) +2 (181

The cost of the mixed-mode network can be minimized by choosin.- the best interstation spacing as a
function of burstiness. When the traffic is bursty the best z is large, and it becomes smaller when the
traffic becomes steadier.

Fig. 14 shows the quality of various one-dimensional networks. The quality of the one-
dimensional ALOJIA network is (2NST-4- I )/(2eNS,,T+ I ). The curve labelled 'one-level dedicated'
shows the quality of the one-level organization suitable to bursty traffic (derived from (14)) when the
traffic is bursty. and the one-level organization suitable to steady traffic (derived from (15) when the
traffic is steady. The two curves labelled mixed-mode bursty and mixed-mode steady were obtained.
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from 17) and (18), respectively. The z that minimizes the necessary capacity was chosen for each as a
function of' NS, T

It is interesting to note that whenever the mixed-mode schemes are better than ALOHA, the
steady scheme, obtained from (18). is better than the hursty one, obtained from (17). That is, the top
level will he steady and should be organized accordingly.

In writing (18), we assumed that even if a message has only a small distance to go it will go to
the nearest station and from that station to its destination. But the destination may be within its range.
and it may be able to receive the transmission meant for the station directly. If such short-range
transmissions are received directly at the end of their first hop without retransmission by a station, the
system performance will be improved. Both the average number of hops necessary for messages and
the amount of contending traffic in the bottom level will decrease.

It is evident a priori that this improvement will be important only when the traffic is bursty and
the best interstation spacing is large. We have calculated it explicitly when the distribution of distances
to be travelled by messages is exponential. Fig. 15 shows that this improvement to the mixed-niode
network becomes noticeable only when the traflic is hursty enough to make the ALOIIA network better
than the mixed-mode network' In other words, this impro ement is irrelevant.

An alternative organization for mixed-mode networks can he based on the go-forward routing
policy: The first hop of each message " ill be to the nearest station tiwards its destination. The message
will then use the top level to get to the last station before its destination, and then again use the bottom
level to reach its destination

If all transmission, have the same range it must be at least L in this network, and we shall
assume it is exactly L. Therefor, we shall have more contending tratfic in the bottom level of a go-
forward network than before However, there will be less traffic using the top level, and fewer hops
will be necessary there, This alternative organization will be worse than the earlier one when the traffic
is steady, and will be better when the traffic is bursty. When the traffic is steady, the interstation dis-
tance will be small, and the gain in the top level will be small, but doubling the contention in the bot-
tom level is very costly. When the traffic is burstv, contention is not a serious problem and the intersta-
tion distance is large, so the gain possible in the top level will be significant.

l'tg I5 show,, the go-forward mixed-mode network ( shown onl, when it is better than the ear-
lier scheme). and we see that it is better only when both ire worse than the ALOIIA network. Organ-
izing mixed-mode networks on the go-forward principle is neve: a good idea. We see here once again
that when a mixed-mode network is better than ALOIA and its interstation spacing is properly chosen.
it-, top level is 'steady'

In the rest of this chapter when wc talk about mixed-niode networks with one dedicdted level
we shall alway, refer to the mixed-mode scheme described h (I I), when the best : is chosen as a
function of' burstiness in order to minimize the neccssary capaclty.

9. Improvinp the Random Access Part

tIntil now we have modelled the terminal-station level by a set of ALOHIA systems. But since
half the traffic in each ALOIIA Fvstem is concentrated in the station it can be coordinated better than in
ALOIIA. What will a better terminal-station level contribute to the overall performance of the net-
work .
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Let U be the maximum utilization of each terminal-station system. We shall model the
mixed-mode network obtained with a general terminal-station access scheme by an equation similar to
(18), where I/U is substituted for e. We have divided the interval between lie and I into three equal
parts, and show in Fig. 16 the quality of a mixed-mode network where U, the maximum utilization of
each terminal-station system, is .367 (ALOHA), .579, .798 and I (M/M/l).

A mixed-mode network built with a better terminal-station access mode will obviously be
better, but the improvement is not dramatic. Fig. 17 shows the ratio between the quality of a mixed-
mode network with a given U and the quality of the mixed-mode network built with ALOHA as the
terminal-station access mode. The curves do not go all the way to the left since they were not drawn
when the mixed-mode network becomes worse than the one-level ALOHA network.

When comparing the quality of two mixed-mode networks it should be noted that the best
interstation distance as a function of burstiness was chosen separately for each. This gives the mixed-
mode networks an internal adjusting mechanism, and explains why improving the utilization of the
terminal-station part never leads to a comparable overall improvement in the necessary capacity. When
using ALOHA for the terminal-station level, we never push it to its maximum utilization, and therefore
can never, gain a factor of e if we assume an M/M/1 terminal-station part. We have a similar conclu-
sion in [41 when discussing pure ALOHA networks.

Can having more than two levels improve the mixed-mode networks? By how much? We saw
in [41 that a pure ALOHA network with two levels is never better than a one-level ALOHA network.
But the argument used there does not apply to mixed-mode networks. A mixed-mode network with
one dedicated level (the station-station level) and two ALOHA levels in the terminal-station part can
lead to an improvement, but not to a large one. The maximum utilization of two-level ALOHA is
.465 [41. But even if we had a one-hop terminal-station scheme with this maximum utilization it fol-
lows from (18) that it would improve the mixed-mode network by at most 7%. Achieving this utiliza-
tion by two hops will, of course, lead to an even smaller improvement.

10. More than One Dedicated Level?

More than one level in the terminal-station random access part does not lead to a significant
improvement. What can we gain by having more than one level in the station-station dedicated part?
What can we gain by having the optimal number of levels in the station-station dedicated part? The
following is a lower bound [71 on the capacity necessary for the station-station dedicated part when the
traffic is steady and when the optimal number of levels is used:

('1= 2NS, + 1 (e/2,n4/z, (19)

This lower bound is obtained by using regular hierarchical structures 131 to reduce the dependence of
the second term of (15) on i1z. while ignoring the fact that when traffic is not bursty regular structures
would increase the first term of (15). Combining (19) and (16) we get that the total capacity required
for this mixed-mode network is

C' = 2NS,(l+e)+ (e/2)ln(4/z) + 2 1/2 (20)

Fig. 18 shows the quality of a mixed-moie network with the optimal number of dedicated levels and
with one dedicated level, as obtained from (20) and (18) respectively, by choosing the best z for each.
Even though we use an upper bound on the performance of a dedicated station-station part using the
optimal number of levels we did not gain much over the mixed-mode network that used only one dedi-
cated level! The reason is familiar by now. Multi-level organizations are especially important when the
network is both bursty and distributed, but this will not occur in our mixed-mode networks, since the
station-station part will become very distributed (i.e., I/: will become very large) only when the traffic
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is very steady.

Equation (20) can be generalized and will describe ;,ny nixed-mode network with an optimal-
level dedicated station-station part and a one-level random acccss terminal-station part if U. the max-
imum utilization of the random access scheme, is substituted fc.r Ile. Fig. 19 shows the ratio between
the quality obtained with an optimal number of dedicated levels and the quality obtained with one dedi-
cated level. This ratio is identically equal to I when the traffic is bursty because I/: is then very small,
and the optimal number of levels is then 1. We see from Fig. 19 that if the random access mode is
better than ALOHA. introducing morc than one dedicated level will lead to an even smaller improve-
ment. Only if there is a strong interaction, and the curve with U=.092 can be taken to represent
ALOHA with an interaction ratio equal to 4. will having more than one dedicated level lead to a more
significant improvement.

I1. Conclusions

ALOHA is good when the traffic is bursty, and dedicated channels are good when the traffic is
steady. Mixed-mode systems, with ALOHA in the bottom level and dedicated channels in the top
level, can be much better than either ALOHA or dedicated channels when the traffic is of medium
burstiness and the 'amount' of mixing is properly adjusted. Under reasonably favorable conditions, the
available bandwidth should be shared by the two levels, and not split between them. But even when
conditions are the least favorable, and the channel must be split, the mixed-mode systems are surpris-
ingly good.

Mixed-mode systems in general, and mixed-mode networks in particular, show a certain robust-
ness. By the freedom to choose the right mix, the system gains an internal adjustment mechanism, and
will never push any of its two parts until it is very bad. That is, the ALOHA part will never be heavily
loaded and there will never be many lightly utilized dedicated channels. Because of this robustness it is
harder to improve mix-mode networks. Changing the bottom level of a mixed-mode network from
ALOHA to a better random access scheme leads to only a relatively small overall improvement. Intro-
ducing more dedicated levels in a mixed-mode network likewise leads to only a modest overall
improvement.
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